The 3rd BG/L Sytems Software and Applications Workshop

Large scale structural analysis using ADVC on Blue Gene

April 19, 2006

Hiroshi AKIBA Allied Engineering Corporation

Background

- Large scale analysis is needed in classical CAE field
- Existing CAE systems do not seem to show good performance on parallel computer systems
- We have developed a commercial parallel structural FEA code ADVC
- We are cooperating with NIWS Co. Ltd. and IBM Corporation as to BG/L
- BG/L is one of the best environment to make an evaluation of parallel performances of ADVC

Real products need detailed analysis

Wire bondings of real product

CAD

Industrial products are composed of a large number of components

Industrial products are composed of a large number of components —— Solder balls

Model of industrial products is getting larger

Domain Decomposition Method

- Analysis object : Ω
- Governing global equation:

$$Ku = f$$

- The space of DOF *u*: *V*
- Ω is decomposed into subdomains Ω^{I}
- The domain decomposition induces decomposed subspaces V^{I} of V

General algorithm for large global equation

• Stiffness equation is solved by a preconditioned CG method

GKu = Gf

where G is a global precondition matrix

• *G* can be represented in the form:

$$G = \sum_{I} G^{I}$$

where G^{I} corresponds to the subspace V^{I}

• Variation exists corresponding to the framework of the iteration method and choice of the precondition matrix

CGCG method of ADVC

- CG iteration on the whole domain
- Global coarse grid motion on the decomposed subdomains is taken into the local and global precondition

Performance of ADVC(1)

Large (medium) scale analysis model — 90 million DOFs problem on BG/L

- Machine component of 30 million nodal points, 90 million DOFs
- BG/L two racks, 2048 nodes
- Elapsed time: 170 seconds

Performance of ADVC(2)

Absolute performance —— Analysis of small scale model

- Machine component of 4 million nodal points, 12 million DOFs
- BG/L one rack, 1024 nodes
- ADVC has CG option. CG and CGCG are compared
- CG method is the simplest. It gives the highest parallel performance in the ADVC's option
- CGCG method is as fast as 13 times of CG. Parallel efficiency is lower than CG but not so bad

No of nodes	64	128	256	512	1024]
CG	3678	1917	1023	575	371 🔨	
CGCG	181	93	66	41	28] 13 times

CPU time (sec)

Parallel efficiency on the basis of 64 node results (%)

No of nodes	64	128	256	512	1024
CG	100	95.9	89.9	80	62
CGCG	100	97.3	68.6	55.2	40.4

I have given:

- 1. Backgrounds
- 2. Domain decomposition method and CGCG in ADVC
- 3. Parallel Performance of ADVC on Blue Gene/L

Thank you