| IBM Research

George Almasi

04/19/06 © 2006 IBM Corporation

IBM Research

Introduction: the do's and don't's of BG/L MPI

Be mindful of memory # Overlap computation &
s Network is in userspace communication?
s Easily clobbered # Used to say: don'tdo it
All memory errors end up s Introducing two
in communication library! implementations to enable
Memory is very limited overlap
Be mindful of buffer a8 Performance largely
ownership untested

About to introduce more
restrictions

2 04/19/06 © 2006 IBM Corporation

IBM Research

Summary

Communication libraries in System Software rel. 3
(Rochester)

a |[nterrupt driven operation
a ARMCI/GA

Research Directions (Watson)
s Common external API infrastructure
a8 UPC compiler & runtime

3 04/19/06 © 2006 IBM Corporation

IBM Research

Interrupt driven communication

Charles Archer, Mike Blocksome, Brian Smith, Joe
Ratterman, Pat McCarthy, Mike Mundy, Todd Inglett,
Derek Lieber, Georghe Almasi, Jose Castanos, Jose
Moreira, Jeff Parker

04/19/06 © 2006 IBM Corporation

IBM Research

Interrupt driven communication: Summary

Traditional: network # Better application
serviced by polling response in certain
i ion
#New: handle network situations
device interrupts #But ... diminished overall
a8 Torus “watermark” interrupt performance
8 Send & receive 8 Interrupt handling costs
|
\VN mode Inter Processor cycles:
Interrupts 8 “noise” in the system
Similar mechanism in # cache pollution

VN and CP operating
modes

5 04/19/06 © 2006 IBM Corporation

IBM Research

Interrupt driven communication:
Technical Challenges

#No thread support in Compute Node Kernel

|nterrupt handling implies multiple execution contexts

HW: interrupts signal not trigger based
a Torus interrupt has to be disabled until handled
reenabled at the end

HW: watermark interrupts are critical
8 Can be preempted by external input interrupts

#BlueGene glibc not thread safe

Network Hardware not thread safe

6 04/19/06 © 2006 IBM Corporation

IBM Research

Interrupt driven communication:
Components of solution

#New signals: SIGTORUS1, SIGTORUS2
(names of these may change)

#Recursive locks on glibc, network hardware

#System call: sc_torus_interrupt_ctl(action,mask)
8 Action: enable/disable
a Mask: bit vector of torus interrupt sources
s Nested implementation (w/ counters)

#Lock acquire/release: rts_torus_lock(), _unlock, _try
#Used by glibc and MPICH2

7 04/19/06 © 2006 IBM Corporation

IBM Research

Interrupt driven communication:
Conclusion

MPI will start with interrupts disabled by default

Interrupt behavior controlled by new environment
variable (to be named)

Performance compromise?

a8 Preliminary measurements indicate ~ 1000 cycles of
interrupt handling overhead (0.7 ps)

|mpact on cache and system noise to be evaluated

8 04/19/06 © 2006 IBM Corporation

| IBM Research

ARMCI/GA

- Brian Smith
([%ﬁreeokr L#\eebglrmasi Charles Archer

Jose Castanos Joe Ratterman
Sriram Krishnamoorthy Jose Moreira
Mike Blocksome
Mike Mund
Pat McCarthy
Todd Inglett

04/19/06

<||Ii

© 2006 IBM Corporation

IBM Research

ARMCI deployment

#Done by IBM Rochester #0Overall goals:
#Port will reside at PNNL # Port ARMCI, GA

s Will be deployed with s Port at least 1 GA |
Release 3 application with community
assistance

dinterrupts on by default s pon't break anything else

8 Show scaling to 1 rack

10 04/19/06 © 2006 IBM Corporation

IBM Research

ARMCI/GA requirements

Messaging library APl with one-sided operations

8 Put, get, accumulate, wait, test, barrier, malloc, fence,
lock/unlock, collectives

Peaceful co-existence with MPI

Mechanism for overlapping computation with
communication

1 04/19/06 © 2006 IBM Corporation

IBM Research

New at Research: Common Messaging API

04/19/06 © 2006 IBM Corporation

IBM Research

Common Messaging API

0One messaging interface ... to serve them all
Like the One Ring, it's the stuff of legend and myth

a8 ... maybe less sinister

Framework for ...
a Encapsulating algorithms already written

Allow new algorithms to be written easily
#a Think “toolkit” ... but that has legal implications as well
a8 Allow portability (yes, we are thinking of /P)

a Allow experimentation with new programming paradigms
8 A low(er) level of abstraction for messaging

13 04/19/06 © 2006 IBM Corporation

| IBM Research

Messaging infrastructure: BYOML

04/19/06 © 2006 IBM Corporation

IBM Research

Common Messaging API: principles & components

#Designed to be pollable #Sysdep

Interrupt safe 8 Mapping, initialization,

configuration
s Thread safe

_ #2-sided point-to-point
#Non-blocking communication (MPI)
s Can make blocking calls

easily #1-sided point-to-point

communication

#Devices, methods & _
APls # Collectives

8 Coll. Net., Global Interrupts
a Optimized torus collectives

15 04/19/06 © 2006 IBM Corporation

IBM Research

Common Messaging API: Mapping & Initialization

// opaque datatype for holding singleton
typedef ... BG Messager t;
typedef BG Messager t * BG Messager p;

// initialization, advance, query functions

void BG Messager Init (BG_Messager p msgr);
unsigned BG Messager advance (BG_Messager p);
int BG Messager mode (BG_Messager p);

unsigned BG Messager available (BG Messager p);

// mapping

unsigned BG Messager rank (BG_Messager p);

unsigned BG Messager size (BG_Messager p);

int BG Messager torus2rank (BG Messager p m, int, int, int, int);
int BG Messager rank2torus (BG Messager p m, int rank,

int *, int *, int *, int ¥*);

16 04/19/06 © 2006 IBM Corporation

IBM Research

Common API: 2-sided point-to-point messaging
Types & Callbacks

Typedef ... BG2S t;
typedef BG2S t * BG2S p;

// long message callback

typedef BG2S t *(*cb BG2S Recv) (const BGLQuad * msginfo,
unsigned senderrank,
const unsigned sndlen,
unsigned * rcvlen,
char ** rcvbuf,
BG Callback t * cb _info);

// short message callback

typedef void (*cb BG2S RecvShort) (const BGLQuad * msginfo,
const char * sndbuf,
const unsigned sndlen) ;

17 04/19/06 © 2006 IBM Corporation

IBM Research

Common API: 2-sided point-to-point messaging
Sending 2-sided messages

// 2-sided send

void BG2S_ Send (BG2S_t * request,
const Callback t * cb _info,
BG Messager p messager,
const BGLQuad * msginfo,
const char * sndbuf,
unsigned sndlen,
unsigned destrank);

// persistent send

void BG2S Create (...);
void BG2S_Reset (BG2S_t * request);
void BG2S Start (BG2S_t * sender);

18 04/19/06 © 2006 IBM Corporation

Common Messaging API: Tree, Gl collectives

19

IBM Research

void BGGI Barrier
void BGTree Barrier

void BGTree Bcast

void BGTree Allreduce

()
(int

(int
void
int
int

(const void
void
unsigned
BGLML_ Dt
BGLML_Op
int
unsigned

04/19/06

pclass);

root,
buffer,
nbytes,
pclass);

sbuffer,
rbuffer,
count,
dt,

op,
root,
pclass);

© 2006 IBM Corporation

IBM Research

Common Messaging API: One-sided messaging
put, get, fences

void BG1S Memput (BG1ls p request,
const BG Callback t * callback,
unsigned destrank,
const char * sndbuf,
unsigned dstbase,
char * dstbuf,
unsigned sndlen,
enum ... consistency);
void BGlS Memget (BGls_t * request,
ceey
bool isconsistent);
void BGlS Fence (unsigned destrank,

const BG Callback t * callback);

void BGlS Allfence ()

20 04/19/06 © 2006 IBM Corporation

IBM Research

Common API: 1-sided consistency models ...
and how to use them

Sequential consistency #aUPC:
One outstanding op per rank # sequential & relaxed
consistency

Relaxed consistency

s One outstanding PUT per ~ SARMCIL:
peer # Depends on whom you
: : listen to
d Location consistency (ala } . : ”
ARMCI) # “Location consistency
s PUTs to same peer and #MPI one-sided
overlapping addresses must # Zaphod is your friend

be ordered

Zaphod's relaxed
consistency

21 04/19/06 © 2006 IBM Corporation

®
____:__

i

| IBM Research

© 2005 IBM Corporation

04/19/06

| IBM Research

UPC On Blue Gene/L

23 | 04/19/06 © 2006 IBM Corporation

IBM Research

UPC on BG/L: Overview

s Shared memory s UPC for AIX and Linux
programming model SMP: available on IBM
s Partitioned Global alphaworks site
Address Space (PGAS) s Technology Preview,
Shared or distributed part of PERCS proposal
memony s Package extension for
s shared keyword the IBM XL compiler v8.0
Blocking factor s 2005 HCP Challenge

s upc_forall loop Class 2 Award (shared)

s With affinity test

04/19/06 © 2006 IBM Corporation

| IBM Research

IBM XL UPC

25 | 04/19/06 © 2006 IBM Corporation

| IBM Research

UPC Compiler Architecture
AUPC compller

HEon=1mnu

TR JPC exiensions

UPC Run time API

UPC shared UPC distributed API

IHCHIDLYMRAES UECHAPIRAS UPCBEINRAS

AP o

Digiriptiad
LUE0EY Blie Gene/L
CIOSLETS

SHEARCUNNCIONY
IECINNES

26 04/19/06 © 2006 IBM Corporation

IBM Research

Environment

Blue Gene characteristics & installations

* BG nodes (2 procs. each) have 4M L3 cache, 512 MB local
memory; connected by a 3D torus, 175 MB/s/link

* Blue Gene/X — 1 rack, 2048 procs., 512 GB mem.

* Blue Gene/W — 20 racks, 40K procs., 10 TB mem.

* Blue Gene/L — 64 racks, 128K procs., 32 TB mem.
Software

* An experimental version of the IBM XL UPC compiler

* An experimental version of the BG/L communication library
Benchmarks:

* Random Access and EP STREAM Triad

27 04/19/06 © 2006 IBM Corporation

IBM Research

GUPS Benchmark — Random Updates

shared u64Int Table[N];
u64Int ran = starts (NUPDATE/THREADS * MYTHREAD) ;
upc_forall (i = 0; i < NUPDATE; i++; i) {
ran = (ran << 1) * (((s64Int) ran < 0) ? POLY : 0);
Table[ran & (TableSize-1)] ~= ran;

}

Each update is a packet — performance is limited by network
latency

Important compiler optimization:
— Identify update operations
— Translate them to one sided update in comm. library

Verification: run the algorithm twice

Lines of code: 111

© 2006 IBM Corporation

28 04/19/06

IBM Research

GUPS: Performance Results

Processors Problem Size GUPS Efficiency
2N
1 22 0.00054
2 22 0.00078 73%
64 27 0.02000 61%
2048 35 0.56000 51%
65536 40 11.54000 33%
131072 41 16.72500 23%

04/19/06

© 2006 IBM Corporation

IBM Research

EP Stream Triad

shared double a[N], b[N], c[N];

upc_forall (i = 0; i < VectorSize; i++; i) {
a[i] = b[i] + alpha * c[i];

}

Embarrassingly parallel: performance is gated by
the individual node memory bandwidth

Important compiler optimization:

—Identify shared array accesses that have affinity to the
accessing thread; transform them into local accesses

Verification: random sampling

Lines of code: 105

30 04/19/06 © 2006 IBM Corporation

IBM Research

EP STREAM Triad — Performance Results

31

Processors Problem Size Memory Used GB/s
1 2,000,001 45 MB 0.73
2 2,000,001 45 MB 1.46
64 357,913,941 8 GB 46.72
2048 11,453,246,122 256 GB 1472.00
65536 366,503,875,925 8 TB 47830.00
131072 733,007,751,850 16 TB 95660.00

04/19/06

© 2006 IBM Corporation

IBM Research

NAS CG

11000

10000 /
9000 /
8000 / —
7000 %

wn

S~

o

(@]

= 6000

8

o 5000

|_
4000
3000 v
2000 \upc|
1000 [[[I |

64 128 256 512 1024 2048
Threads
Ky 04/19/06 © 2006 IBM Corporation

IBM Research

Discussion

We focused on the simplicity of code and on compiler
and runtime optimizations, not on algorithmic changes

Most challenging issues:

—Qvercome limitations in compiler indexing decisions and
scaling the UPC runtime system to the max. machine size

*How to index a 16 TByte array on a 32 bit machine?
—QObtaining single node performance comparable to C

Eliminate the shared memory translation overhead
—Reduce one-sided communication latency

*Naive UPC code tends to generate short messages

33 04/19/06 © 2006 IBM Corporation

IBM Research

Acknowledgments

#Roch Archambault, Roland Koo, Raymond Luk
(Toronto SWG)

Jose Castanos, Siddhartha Chatterjee, John
Gunnels, Manish Gupta, Fred Mintzer (Watson)

#Tom Spelce (LLNL)
#DARPA HPCS (financial support)

34 04/19/06 © 2006 IBM Corporation

