System Software Issues for the Future

Alok Choudhary, Professor **Director: Center for Ultra-Scale** Computing and Information Security Dept. of Electrical & Computer Engineering And Kellogg School of Management **Northwestern University**

choudhar@ece.northwestern.edu

HPC Foundation

Runtime Systems – Challenges

User specifies how **Complex non-portable optimization space** streaming/ Small/large configuration s/w layer Terabytes Mair Regular/irregular Memory Local/remote **MEMs** Low Power DRAM user burdened Petabytes High Performance Disk Ineffective interfaces Non-communicating layers Holographic Memory Massive Arrays of Idle Disks Exabyte **Tape Silos**

Emerging Storage Hierarchy

User application	Access patterns: shared files, individual files, data partitioning, check- pointing, data structures, inter-data relationship
HDF5 pnetCDF	Data types (byte-alignment), data structures (flexible dimensionality), hierarchical data model
MPI-IO	Collectives, independents I/O hints: access style (read_once, write_mostly, sequential, random,), collective buffering, chunking, striping
	Caching, fault tolerance, read-ahead, write-behind, I/O load balance, wide-area, heterogeneous FS support, thread-safe
Client-side file system	Open mode (O_RDONLY, O_WRONLY, O_SYNC), file status, locking, flushing, cache invalidation Machine dependent: data shipping, sparse access, double buffering
	application-aware caching, pre-fetching, file grouping, "vector of bytes", flexible caching control, object-based data alignment, memory-file layout mapping, more control over hardware, Shared file descriptors,
Server-side file system	Read-ahead, write-behind, metadata management, file striping, security, redundancy
	Group locks, flexible locking control, scalable metadata management, zero-copying, QoS, Shared file descriptors,
Storage system	Access base on : file blocks, objects Scheduling, aggregation Active storage: data filtering,object-based/hierarchical storage management, indexing, mining, power-management

Decouple "What" from "How"

Current

Goal

Caching Example: Direct Access Caching at Compute Nodes (BG)

April 20, 2006

Coherence Control at I/O Nodes

Data at I/O Nodes

Logical partitioning view of a file

block 0 block 1 block 2 block 3 block 4

Distributed metadata

Cache pages at I/O nodes

April 20, 2006