
Cobalt: An Open Source
Platform for HPC System
Software Research

Narayan Desai

desai@mcs.anl.gov

04-20-2006

mailto:desai@mcs.anl.gov

2

Overview

 Motivations
 Design Goals
 Architecture
 BG/L Features
 Development Status
 Future Areas of Work

3

Motivations

 Needed to support both computational and computer
science users

 System software developers have different needs from
computational scientists
– System hangs are common, even desired
– A large variety of configurations are required,

sometimes simultaneously
– The “application” can span all software on a node

 System failures are more common during system software
research and development
– System software must deal gracefully with faults
– Most resource managers not suitable for system

software research environments

4

Motivations (cont)

 No resource manager shipped with our BG/L system
 How hard could it be?

5

Design Goals

 Suitable for “MCS style” machines
– Mix of computer science and computational science
– Neither side dominates the other

 RISC approach to system software
– As simple as possible, no simpler

 Agility
 Portability
 Extensibility

6

Architecture

 Component Architecture
– First revision loosely based on the SciDAC Scalable

System Software interfaces
 Smaller and simpler is better

– somewhat feature poor (but getting better fast)
– ~2700 lines of python code
– ~600 lines are BG/L specific

 Its agility makes it the perfect research platform
– Easy to prototype new ideas
– Adding new features is easy and quick

•2 minutes is the record bugfix time to deployment
•3 minutes is the record feature addition time to
deployment

 If you don't like a component's implementation, write a
new one

7

Cobalt on BG/L

Scheduler

Queue Manager

Allocation Manager

Process Manager

mpirun

Bridge API

DB2

MMCS

CIODB

I/O Node
Kernel and Ramdisk

PVFS2 CIOD

CNKCNKCNKCNK

IBM

Cobalt

ZeptoOS

8

Scheduling on BG/L

 Partitions are defined for scheduling purposes
– Includes size, queue, etc

 One partition definition per location for user jobs
– Partitions can overlap, but dependencies need to be

defined
 The scheduler effectively packs jobs onto the machine
 Greedy backfill is implemented
 Reservations
 Per-Queue policies

– default (fifo + backfill)
– short queue (< 30 minute jobs)
– easy to implement more

9

Dynamic Kernel Support on BG/L

 User-setup kernel profiles
– includes CNK, ION kernel, ION ramdisk, and loader

 Each partition configured with a partition specific
boot location

 User jobs include a kernel profile
– with a default profile of “default”

 The partition specific boot location is a symlink
 Cobalt modifies this link during each job, once

execution location has been established
 The partition boots the specified kernel upon job

startup

10

Development Status

 Major rewrite just finished
– Reduced code from 5K lines of code and a lot of

prereqs to 2.8K and one prereq
– Streamlined deployment and management processes
– Basic accounting support

 Cobalt has been running in production for over 1 year
– At ANL and NCAR

 Cobalt is deployed at several sites worldwide
– Including AIST and NIWS in Japan

 Open development process
– Suggestions and patches are both welcome
– NCAR has helped substantially with code and

documentation improvements

11

Active Development Areas

 Scheduler Improvements
– More sophisticated multi-rack allocation policies
– More efficient backfill
– Investigate rule-based scheduling policies
– Periodic scheduling policies
– Reading Susan's mind

 Support for user specified ZeptoOS options
 Full allocation management/accounting functionality
 Better user interfaces

– Dynamic web pages, etc

12

Results

 Small code base allows easy modifications
– Usability improvements
– New features (~3 minutes is the current record)
– Site-specific customizations
– Porting to new systems is quite easy

 Properly arbitrating between system software developers
and computational science users
– Allows on-the-fly system configuration changes
– Ensures that computational jobs get non-development

versions of system software
– Able to protect each user group from the other and

its software requirements
 Therapeutic effect on sysadmin blood pressure

– System software small enough to be readily
understood and modified

13

The End

 Questions?

http://www.mcs.anl.gov/cobalt

