

Cobalt: An Open Source Platform for HPC System Software Research

Narayan Desai desai@mcs.anl.gov 04-20-2006

Overview

- Motivations
- Design Goals
- Architecture
- BG/L Features
- Development Status
- Future Areas of Work

Motivations

- Needed to support both computational and computer science users
- System software developers have different needs from computational scientists
 - System hangs are common, even desired
 - A large variety of configurations are required, sometimes simultaneously
 - The "application" can span all software on a node
- System failures are more common during system software research and development
 - System software must deal gracefully with faults
 - Most resource managers not suitable for system software research environments

Motivations (cont)

- No resource manager shipped with our BG/L system
- How hard could it be?

Design Goals


- Suitable for "MCS style" machines
 - Mix of computer science and computational science
 - Neither side dominates the other
- RISC approach to system software
 - As simple as possible, no simpler
- Agility
- Portability
- Extensibility

Architecture

- Component Architecture
 - First revision loosely based on the SciDAC Scalable System Software interfaces
- Smaller and simpler is better
 - somewhat feature poor (but getting better fast)
 - ~2700 lines of python code
 - ~600 lines are BG/L specific
- Its agility makes it the perfect research platform
 - Easy to prototype new ideas
 - Adding new features is easy and quick
 - 2 minutes is the record bugfix time to deployment
 - 3 minutes is the record feature addition time to deployment
- If you don't like a component's implementation, write a new one

Cobalt on BG/L

Scheduling on BG/L

- Partitions are defined for scheduling purposes
 - Includes size, queue, etc
- One partition definition per location for user jobs
 - Partitions can overlap, but dependencies need to be defined
- The scheduler effectively packs jobs onto the machine
- Greedy backfill is implemented
- Reservations
- Per-Queue policies
 - default (fifo + backfill)
 - short queue (< 30 minute jobs)</pre>
 - easy to implement more

Dynamic Kernel Support on BG/L

- User-setup kernel profiles
 - includes CNK, ION kernel, ION ramdisk, and loader
- Each partition configured with a partition specific boot location
- User jobs include a kernel profile
 - with a default profile of "default"
- The partition specific boot location is a symlink
- Cobalt modifies this link during each job, once execution location has been established
- The partition boots the specified kernel upon job startup

Development Status

- Major rewrite just finished
 - Reduced code from 5K lines of code and a lot of prereqs to 2.8K and one prereq
 - Streamlined deployment and management processes
 - Basic accounting support
- Cobalt has been running in production for over 1 year
 - At ANL and NCAR
- Cobalt is deployed at several sites worldwide
 - Including AIST and NIWS in Japan
- Open development process
 - Suggestions and patches are both welcome
 - NCAR has helped substantially with code and documentation improvements

Active Development Areas

- Scheduler Improvements
 - More sophisticated multi-rack allocation policies
 - More efficient backfill
 - Investigate rule-based scheduling policies
 - Periodic scheduling policies
 - Reading Susan's mind
- Support for user specified ZeptoOS options
- Full allocation management/accounting functionality
- Better user interfaces
 - Dynamic web pages, etc

Results

- Small code base allows easy modifications
 - Usability improvements
 - New features (~3 minutes is the current record)
 - Site-specific customizations
 - Porting to new systems is quite easy
- Properly arbitrating between system software developers and computational science users
 - Allows on-the-fly system configuration changes
 - Ensures that computational jobs get non-development versions of system software
 - Able to protect each user group from the other and its software requirements
- Therapeutic effect on sysadmin blood pressure
 - System software small enough to be readily understood and modified

The End

Questions?

http://www.mcs.anl.gov/cobalt