BGL for high energy physics

QCD (Quantum Chromodynamics) simulation

Shoji Hashimoto (KEK) @ BG/L Systems Software and Applications Workshop, at CBRC, Apr. 19, 2006

KEK is ...

High Energy Accelerator Research Organization (KEK), located in Tsukuba

Particle and nuclear physics, material sciences, etc. using accelerators

KEK B Factory (KEKB)

Photon Factory

Japan Proton Accelerator Research Complex (J-PARC) International Linear Collider (ILC) project

Apr 19, 2006

KEK supercomputer

Leading computing facility in that time

- 1985 Hitachi S810/10
- 1989 Hitachi S820/80
- 1995 Fujitsu VPP500
- 2000 Hitachi SR8000 F1 1.2 TFlops
 - 2006 Hitachi SR11000 2.15 TFlops IBM Blue Gene/L 57 TFlops

350 MFlops

128 GFlops

3 GFlops

Machine is for ...

- To be shared by Japanese groups on (theoretical) particle and nuclear physics
- "KEK Large Scale Simulation Program" : call for proposals of project to be performed on the supercomputer.
 - Program Advisory Committee (PAC) decides the approval and machine time allocation.
- 60~80% of the computer time has been allocated for lattice QCD.
- Other big users include accelerator design.

Installation

Apr 19, 2006

Installation

Now under operation

- 10 racks (4+4+2)
 - 5 1024-node queues
 - 8 512-node queues
 - some small test queues
- Fully operational since March 1st, 2006.
 - saturated by lattice QCD jobs

Lattice QCD

- Quantum Chromodynamics (QCD) = theory of strong interation
- Forces binding quarks and gluons to form proton/neutron, mesons, etc.
- Chiral symmetry breaking: origin of masses of matters

"strong" nonlinear interaction
⇒ Needs numerical simulation on the lattice

Lattice QCD simulation

Fields on the lattice

- Quark fields (3 color and 4 spin degrees of freedom) on 4D lattice sites
- Interaction with nearest neighbors
- Pickup effects of gluons on links
- 4D lattice naturally mapped on 3D torus; extra 1D on 2 cores inner node (VN mode)

Optimization for BGL

Done by IBM Japan (J. Doi and H. Samukawa)

- Use of Dual FPU by hand-written assembly language
 - 3x3 complex matrix times vector
 - Efficient use of registers
 - Most recent compiler can do a comparable job??

- Low-level communication API
 - MPI is too rich for NN communications.
 - Direct access to send/recv FIFO
 - Small packet (< 256 bytes); no temporal buffer needed

Jun Doi

Deep Computing | Tokyo Research Laboratory

Optimization result of our lattice QCD program

Sustained performance per peak performance:

1 node card 25.45% 29.84%	global lattice size	8x8x8x16	12x12x12x24	
4x4x2x2 = 64 CPUs	1 node card	25.45%	29.84%	
	4x4x2x2 = 64 CPUs		10.000.220	

global lattice size	16x16x16x32	24x24x24x48	
1/2 rack (2.8 TFLOPS)	24.33%	29.23%	aline
8x8x8x2 = 1024 CPUs	(0.68 TFLOPS)	(0.82 TFLOPS)	SCS
1 rack (5.6 TFLOPS)	22.78%	28.57%	buo
8x8x16x2 = 2048 CPUs	(1.28 TFLOPS)	(1.60 TFLOPS)	str

For comparison:

inline assembly with MPI (using buffer to send at once)	17.88%	
(1/2 rack 24x24x24x48)		

Physics goals

Limitations in lattice QCD

- finite lattice spacing *a*
- finite lattice volume L
- quark masses heavier than those in nature

Need extrapolations in each directions

Lattice simulation with *exact* chiral symmetry

Exact chiral symmetry

- **was** difficult to realize on the lattice
- now formulation is available, but numerically very demanding (need Blue Gene)
- Essential to prove the chiral symmetry breaking (source of mass generation)

Why so hard

- Molecular dynamics type evolution
- Large matrix inversion using CG at each step
- The matrix contains sign function

 $D \propto 1 + \gamma_5 \operatorname{sgn}(H_W),$

approximated by a rational function of a large sparse matrix H_W .

- Need inner CG to obtain the rational function (nested CG!)
 - O(10⁵) MV operation at each step
 - Becomes harder towards small quark masses

Simulations ongoing

Summary

- 10 racks of BG/L installed at KEK; working for 50 days without major problems.
- BG/L fits perfectly for lattice QCD applications.
 - In fact, several installations of BG/L (mainly) for lattice QCD around the world (BU, MIT, Edinburgh, Julich, KEK)
 - A workshop was held in Boston (Jan 2006): <u>http://super.bu.edu/~brower/qcd-bgl/</u>

New powerful engine for lattice QCD!

