
IBM Research

© 2006 IBM Corporation

The IBM High Performance
Computing Toolkit on BlueGene/L

David Klepacki
Advanced Computing Technology
IBM T.J. Watson Research Center

IBM Research

© 2006 IBM Corporation

Why Performance Tools are Essential
Device Scaling imposing fundamental constraints on system

– Power dissipation and energy consumption

– Physical size / packaging

Pressure to re-think system architecture

– Blue Gene: low power devices, embedded (small)

– Cell: Attached (embedded) co-processing engine

Systems become inherently more complex

– Connectivity / hierarchical topology (torus, intra-cell, DMA)

– Memory constraints (less per processor)

– Additional technology “boosts” (hyper-threading, SMT)

This poses new challenge to application programming

– New programming paradigm? (not on horizon - legacy codes, ISV apps, etc.)

Conclusion: New software tools essential to mitigate evolving system complexity

IBM Research

© 2006 IBM Corporation

IBM High Performance Computing Toolkit on BG/L

MPI performance: MP_Profiler

CPU performance: Xprofiler, HPM

Visualization and analysis: PeekPerf

Subset of IBM HPC Toolkit on IBM pSeries Servers:

http://www.research.ibm.com/actc/

http://www.absoft.com/Products/Tools/hpc-toolkit/

IBM Research

© 2006 IBM Corporation

Message-Passing Performance:

MP_Profiler Library
– Captures “summary” data for MPI calls

– Source code traceback

– User MUST call MPI_Finalize() in order to get output files.

– No changes to source code
• MUST compile with –g to obtain source line number information

MP_Tracer Library
– Captures “timestamped” data for MPI calls

– Source traceback

IBM Research

© 2006 IBM Corporation

Compiling and Linking Example

BGL=/bgl/BlueLight/ppcfloor

CC=$(BGL)/blrts-gnu/powerpc-bgl-blrts-gnu/bin/gcc

CFLAG= -I $(BGL)/bglsys/include

MPI_LIB= -L $(BGL)/bglsys/lib -lmpich.rts -lmsglayer.rts -lrts.rts -ldevices.rts

TRACE_LIB= -L $(MP_PROFILER) -lmpitrace.rts

BINUTILS_LIB= -L $(BINUTILS) -lbfd -liberty

target: source.c
$(CC) –o $@ $< $(CFLAG) $(TRACE_LIB) $(MPI_LIB) $(BINUTIL_LIB)

$(TRACE_LIB) has to precede $(MPI_LIB)

IBM Research

© 2006 IBM Corporation

MP_Profiler Output with Peekperf

IBM Research

© 2006 IBM Corporation

MP_Profiler - Traces

IBM Research

© 2006 IBM Corporation

Environment Flags

TRACELEVEL
– Level of trace back the caller in the stack
– Used to skipped wrappers
– Default: 0
TRACE_TEXTONLY
– If set to “1”, plain text output is generated
– Otherwise, a viz file is generated
– TRACE_PERFILE

• If set to “1”, the output is shown for each source file
• Otherwise, output is a summary of all source files

– TRACE_PERSIZE
• If set to “1”, the static for a function is shown for every message size
• Otherwise, summary for all message sizes is given

IBM Research

© 2006 IBM Corporation

Xprofiler

CPU profiling tool similar to gprof

Can be used to profile both serial and parallel applications

Use procedure-profiling information to construct a graphical display of
the functions within an application

Provide quick access to the profiled data and helps users identify
functions that are the most CPU-intensive

Based on sampling (support from both compiler and kernel)

Charge execution time to source lines and show disassembly code

IBM Research

© 2006 IBM Corporation

Running Xprofiler

Compile the program with -pg

Run the program

gmon.out file is generated (MPI applications
generate gmon.out.1, …, gmon.out.n)

Run Xprofiler

IBM Research

© 2006 IBM Corporation

Xprofiler: Main Display

Width of a bar:
time including
called routines
Height of a bar:
time excluding
called routines
Call arrows
labeled with
number of calls
Overview
window
for easy
navigation
(View
Overview)

IBM Research

© 2006 IBM Corporation

Xprofiler: Source Code Window

Source code
window displays
source code
with time profile
(in ticks=.01 sec)

Access
– Select function

in main display
– context menu
– Select function

in flat profile
– Code Display
– Show Source

Code

IBM Research

© 2006 IBM Corporation

Xprofiler - Disassembler Code

IBM Research

© 2006 IBM Corporation

LIBHPM

Instrumentation library

Provides performance information for instrumented
program sections

Supports multiple (nested) instrumentation sections

Multiple sections may have the same ID

Run-time performance information collection

Based on bgl_perfctr layer – can be eliminated in BG/P

IBM Research

© 2006 IBM Corporation

Event Sets

16 sets (0-15); 328 events

Information for
– Time

– FPU (0,1)

– L3 memory

– Processing Unit (0,1)

– Tree network

– Torus network

For detailed names and descriptions: event_sets.txt

IBM Research

© 2006 IBM Corporation

Functions

hpmInit(taskID, progName) / f_hpminit(taskID, progName)
– taskID is an integer value indicating the node ID.
– progName is a string with the program name.

hpmStart(instID, label) / f_hpmstart(instID, label)
– instID is the instrumented section ID. It should be > 0 and <= 100

(can be overridden)
– Label is a string containing a label, which is displayed by PeekPerf.

hpmStop(instID) / f_hpmstop(instID)
– For each call to hpmStart, there should be a corresponding call to

hpmStop with matching instID

hpmTerminate(taskID) / f_hpmterminate(taskID)
– This function will generate the output. If the program exits without

calling hpmTerminate, no performance information will be generated.

IBM Research

© 2006 IBM Corporation

Functions (continued)

hpmGetTimeAndCounters(numCounters, time, values)
/ f_GetTimeAndCounters (numCounters, time, values)
– returns the time in seconds and counts since the call to hpmInit.
– numCounters: integer indicating the number of counters to be

accessed.
– time: double precision float
– values: “long long” vector of size “numCounters”.

hpmGetCounters(values) / f_hpmGetCounters (values)
– Similar to hpmGetTimeAndCounters
– only returns the total counts since the call to hpmInit

IBM Research

© 2006 IBM Corporation

Example of Use

C / C++
declaration:

#include “libhpm.h”
use:

hpmInit(taskID, “my program”);
hpmStart(1, “outer call”);
do_work();
hpmStart(2, “computing meaning of life”);
do_more_work();
hpmStop(2);
hpmStop(1);
hpmTerminate(taskID);

Flags
– Compiling: -I$(HPM_DIR)/include
– Linking: -L$(BGL_FLOOR)/bglsys/lib -L$(HPM_DIR)/lib –lhpm.rts -lm

-lbgl_perfctr.rts

IBM Research

© 2006 IBM Corporation

Example of Use (continued)

Fortran
declaration:

#include “f_hpm.h”
use:

call f_hpminit(taskID, “my program”)
call f_hpmstart(1, “Do Loop”)
do …
call do_work()
call f_hpmstart(5, “computing meaning of life”);
call do_more_work();
call f_hpmstop(5);

end do
call f_hpmstop(1)
call f_hpmterminate(taskID)

IBM Research

© 2006 IBM Corporation

Output
Summary report for each task
– perfhpm<taskID>.<pid>
libhpm (V 2.6.0) summary
Total execution time of instrumented code (wall time): 0.143824 seconds
Instrumented section: 3 - Label: job 1 - process: 1
file: sanity.c, lines: 33 <--> 70
Count: 1
Wall Clock Time: 0.143545 seconds
BGL_FPU_ARITH_MULT_DIV (Multiplication and divisions, fmul, fmuls, fdiv, fdivs (Book E mul, div)) : 0
BGL_FPU_LDST_DBL_ST (…) : 23
…
BGL_UPC_L3_WRBUF_LINE_ALLOC (Write buffer line was allocated) :1702
…

Peekperf performance file
– hpm<taskID>_<progName>_<pid>.viz

Table performance file
– tb_hpm<taskID>.<pid>

IBM Research

© 2006 IBM Corporation

Environment Flags
HPM_EVENT_SET
– Select the event set to be recorded
– Integer (0 – 15)
HPM_NUM_INST_PTS
– Overwrite the default of 100 instrumentation sections in the app.
– Integer value > 0
HPM_WITH_MEASUREMENT_ERROR
– Deactivate the procedure that removes measurement errors.
– True or False (0 or 1).
HPM_OUTPUT_NAME
– Define an output file name different from the default.
– String
HPM_VIZ_OUTPUT
– Indicate if “.viz” file (for input to PeekPerf) should be generated or not.
– True or False (0 or 1).
HPM_TABLE_OUTPUT
– Indicate table text file should be generated or not.
– True or False (0 or 1).

IBM Research

© 2006 IBM Corporation

Peekperf

Visualization and analysis tool

Offline analysis and viewing capability

Supported platforms
– AIX

– Linux (Power/Intel)

– Windows (Intel)

– BlueGene
*The toolkit will be available soon on AMD platform

IBM Research

© 2006 IBM Corporation

MP_Profiler Visualization Using PeekPerf

IBM Research

© 2006 IBM Corporation

MP_Tracer Visualization Using PeekPerf

IBM Research

© 2006 IBM Corporation

HPM Visualization Using PeekPerf

IBM Research

© 2006 IBM Corporation

Future Directions

IBM Research

© 2006 IBM Corporation

Unified Framework (Instrumentation and Analysis)

IBM Research

© 2006 IBM Corporation

Proposed Technologies for DARPA HPCS (PERCS)
Completely Binary Approach (pSigma)
– Programmable and dynamic, yet without the need for source code

modification.

Data-Centric Analysis (DCA)
– For HPCS systems, new tools are needed to provide detailed

information on the impact of an application’s data structures in
relation to the underlying hardware.

Alternate Scenario Prediction (ASP)
– Data structure layout

• “what if my array A was dimensioned like …”
– Order of a parallel computation, scheduling of threads, etc.

User-Controlled Automation (autoPerf)
– Productivity is controlled by degree of automation chosen by

programmer.
• Can be fully automated if desired.

IBM Research

© 2006 IBM Corporation

The IBM HPC Toolkit for DARPA HPCS

Binary Instrumentation

Binary Application

HPCS GUI

Communication
Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

IBM Research

© 2006 IBM Corporation

IBM Research

© 2006 IBM Corporation

Data-Centric Analysis Technology (DCA)

IBM Research

© 2006 IBM Corporation

IBM Vision for DARPA HPCS (PERCS)
Instrumented data:

Memory, MPI, IO,
openMP,

HPM

HPM

FPU stalls L2 misses

MPI

e.g., Communication imbalance: Array A

e.g., Block cyclic distribution of A

Automatic performance tuning

Automatic performance analysis

Knowledge base

1. Performance Data Collection
Using Binary Executable Only.

2. Intelligent Mining of Data to
Determine Bottlenecks.

3. Characterization of Bottlenecks
and Solution Determination.

4. Apply Solution to Source Code.

	The IBM High Performance �Computing Toolkit on BlueGene/L
	Why Performance Tools are Essential
	IBM High Performance Computing Toolkit on BG/L
	Message-Passing Performance:
	Compiling and Linking Example
	MP_Profiler Output with Peekperf
	MP_Profiler - Traces
	Environment Flags
	Xprofiler
	Running Xprofiler
	Xprofiler: Main Display
	Xprofiler: Source Code Window
	Xprofiler - Disassembler Code
	LIBHPM
	Event Sets
	Functions
	Functions (continued)
	Example of Use
	Example of Use (continued)
	Output
	Environment Flags
	Peekperf
	MP_Profiler Visualization Using PeekPerf
	MP_Tracer Visualization Using PeekPerf
	HPM Visualization Using PeekPerf
	Future Directions
	Proposed Technologies for DARPA HPCS (PERCS)
	The IBM HPC Toolkit for DARPA HPCS
	Data-Centric Analysis Technology (DCA)
	IBM Vision for DARPA HPCS (PERCS)

