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Terminology & TLAs/FLAs

SIMD = Single Instruction Multiple Data

SIMDization is the automatic generation of SIMD instructions by the 
compiler

440d processor includes “parallel” instructions (aka “double 
hummer”, which act on 2 data (M=2 in SIMD)

440d has 32 primary + 32 secondary registers addressed with one 
5-bit field

SLP = Superword Level Parallelism (2 to 8-way)

CPI = Cycles Per Iteration

PTF = IBM’s term for a “fixpack”
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IBM Compilers for Blue Gene/L

First compiler release supporting PPC 440/440d 
(General Availability 10/2004):

– XL C/C++ V7.0 Advanced Edition for Linux
– XL Fortran V9.1 Advanced Edition for Linux

Blue Gene support was separated from the Linux 
compilers and made available in the next release as a 
PRPQ March 17, 2006:

– XL C/C++ V8.0 Advanced Edition for Blue Gene
– XL Fortran V10.1 Advanced Edition for Blue Gene
– PTF1 (coming soon) will support version 3 of toolchain
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XL C/C++ V8.0 Advanced Edition for Blue Gene

General performance improvements

More GCC compatibility

Perform subset of loop transformations at –O3 
optimization level

Improved performance of quad precision floating 
point

Improved support for auto-simdization
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XL Fortran V10.1 Advanced Edition for Blue Gene

General performance improvements

Continued rollout of Fortran 2003

Perform subset of loop transformations at –O3 
optimization level

Improved performance of quad precision floating 
point

Improved support for auto-simdization
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Blue Gene Specific Work Items in V8.0/10.1

Focus on correctness for SPEC2000 FP

Performance tuning for SPEC2000, SPPM, ddcmd
kernels, NAS 3.2 Serial

Tuning of complex arithmetic for 440d        
(without –qhot)

Tuning of high performance math library “MASS”
for 440d
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Blue Gene Specific Work Items in V8.0/10.1

New SIMDization features
Mixedmode SIMDization: SIMDizing part of a loop without 
distributing the loop

SIMDization tuning items
Enhanced interprocedural alignment analysis to track 16-
byte compile-time alignment
Better alignment code generation to maximize load reuse 
across statements and across iterations
More reuse conscious loop distribution for SIMDization
purposes
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Improvement -O5 V8/10.1 vs. V7/9.1
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Improvement -O5 V8/10.1 vs. V7/9.1
NAS 3.2 Serial Improvement -O5 V8/10.1 vs. V7/9.1
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Improvement -O5 V8/10.1 vs. V7/9.1
ddcmd uKernels

Improvement V8/10.1 vs. V7/9.1 (-O5)
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Improvement -O5 V8/10.1 vs. V7/9.1
SPEC 2000 FP Improvement V8/10.1 vs. V7/9.1 (-O5)
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Improvement -O5 -qarch=440d vs. -qarch=440
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Improvement -O5 -qarch=440d vs. -qarch=440
NAS 3.2 Serial Improvement -qarch=440d vs. -qarch=440
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Improvement -O5 -qarch=440d vs. -qarch=440

ddcmd uKernels
Improvement -O5 -qarch=440d vs. -qarch=440
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Improvement -O5 -qarch=440d vs. -qarch=440
SPEC 2000 FP Improvement -O5 -qarch=440d vs.

-qarch=440
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Improvement of MASS: 440d vs. 440
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Improvement of MASS: 440d vs. 440
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Improvement of MASS: 440d vs. 440
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Blue Gene/L Dual Floating Point Unit
“Double Hummer”
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SIMDization Algorithm

S. Larsen and S. Amarasinghe. Exploiting Superword Level 
Parallelism with Multimedia Instruction Sets. In Proceedings 
of the SIGPLAN '00 Conference on Programming Language 
Design and Implementation, Vancouver, B.C., June 2000
Designed for MMX and AltiVec type instruction sets 
(symmetrical)
Basic Algorithm:

– Find aligned loads/stores in a basic block and pair them up 
(require 16-byte alignment to be known)

– Follow use/def chains to find pairs of isomorphic instructions 
that can be parallelized

– Combine pairs of instructions to form larger groups
– Estimate cost/benefit of SIMD code sequence
– If positive, generate and schedule the instructions
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Where does SIMDization Occur?

In TPO (high-level inter-procedural optimizer)
– Active with –qhot, -O4, or –O5

– TPO does most loop level/inlining/cloning optimizations

– TPO will version loops for alignment or trip count

– Some basic block SIMDization

In Tobey (low-level backend optimizer)
– complex arithmetic on double floats is an ideal target

– other non-regular double floats are also packed

– Tobey does most code motion/scheduling/machine specific optimizations

– Tobey will try to generate SIMD code for all basic blocks
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BG

A Unified Simdization Framework (TPO)
Global information gathering

Pointer Analysis Alignment Analysis

Simdization

Straightline-code Simdization Loop-level Simdization

General Transformation for SIMD

Dependence Elimination Data Layout  Optimization

Simdization

SIMD Intrinsic Generator

Constant Propagation

VMX

CELL

architecture independent
architecture specific

Diagnostic 
output

…

Idiom Recognition
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TOBEY (Backend) Blue Gene SIMDization

SIMDization applied to all Basic Blocks
– May generate asymmetrical  BG instructions
Structure copies using parallel load/store
Reductions applied to TPO generated intrinsics
– __fpadd, __fpmadd, etc.
Local scheduling
– Primary/Secondary register interlock handling
Register allocation
– Spills using parallel load/stores
Loop unroller tries to be smart about BG load/store, parallelizable 
instructions
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Enabling SIMDization

Compile for the right machine
– -qarch=440d –qtune=440

Turn on the right optimizations
– -O/-O2:  Basic Tobey (Backend) SIMDization
– -O3: adds some loop optimizations, modulo scheduling
– -O3 –qhot: adds TPO SIMDization, more loop opts, versioning
– -O4,-O5 (compile and link): whole-program analysis & SIMDization

Tune your programs
– help the compiler with extra info (directive/pragmas)
– use TPO compiler feedback (-qreport and -qxflag=diagnostic)
– modify algorithms (stride-one memory accesses)
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Disabling SIMDization

Compile for 440
– to completely disable SIMDization: -qarch=440 –qtune=440

Turn off the right optimizations
– compile for –qarch=440d –qtune=440
– disable TPO simdization (keep Tobey simdization, with at 

least –O3) 
• for a loop: #pragma nosimd    |    !IBM* NOSIMD
• completely: -qhot=nosimd

– disable Tobey simdization (keep TPO simdization)
• not supported, may not work, try at your own risk
• completely: -qxflag=nhummer:ncmplx
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When is Alignment Handling Needed?
All Aligned -> NONE

– for (i=0; i<100; i++)     a[i] = b[i]  + c[i];
action: none

Misaligned, All Relatively Aligned -> NONE
– for (i=0; i<100; i++)    a[i+1] = b[i+1] + c[i+1];

action: peel first iter
Misaligned, Compile Time -> YES

– for (i=0; i<100; i++)   a[i+1] = b[i+1] + c[i];
– a[i+1],   b[i+1] relatively aligned, c[i] not relatively aligned

action: peel first iter, realign c[i]
Misaligned, Runtime -> NONE

– for (i=0; i<100; i++)    a[i+1] = b[i+1] + c[i+k];
action: versioning, peel first iter, 

realign c[i+k] depending on versioning 
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Dealing with Misaligned Data on Blue Gene

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

1 misaligned-quad load costs  2 aligned-quad cross-loads + 1 select

Load one misaligned quad:
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Dealing with Misaligned Data on Blue Gene 
(continued)

Load multiple consecutive misaligned quad data:
– reuse quad load from previous iteration

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 b4 b5 b6 b7 b8 ...

lfxd b[4]

b4b5 b4b5

fpsel

b3 b4b3 b4

1 misaligned-quad load costs 1 aligned-quad cross-load + 1 select



IBM Blue Gene

© 2006 IBM Corporation33 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V10.1/8.0

Generating SIMD code for Blue Gene

What benefit can you expect from 440d?

Future directions 



IBM Blue Gene

© 2006 IBM Corporation34 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

What code benefits from double hummer?

According to John D. McCalpin, most “real” FP applications 
and Spec2000 FP have:
– Only 20% of instructions are floating point
– 40% of instructions are load/store
– Having 2 independent load/store and FP units allows 

42% more instructions to issue per cycle
• No data restrictions, but roughly represents upper bound

Code must have significant Instruction Level Parallelism 
(ILP)
Code must comply with other restrictions of 440d
Benefits are in terms of throughput, not latency
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Instruction Level Parallelism

Codes with significant ILP:
– Complex arithmetic

– Vector operations

– Matrix multiply

– memcpy

Codes without significant ILP:
– Recurrence-relations (loop carried dependence)

– Dependent calculations (non-loop or non-pipelinable)

– Aliased loads & stores (pointers can be bad – use disjoint)
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Example with ILP

subroutine addme (a,b,c,n)
real*8 a(n),b(n),c(n)
call alignx(16,a)
call alignx(16,b)
call alignx(16,c)
do 10 i = 1,n
a(i) = b(i) + c(i)

10              continue     
end
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Code generated at –O3

Unrolled by 4x, fully SIMDized, executes in 6 cycles (1.5 CPI)
7|                              CL.57:

7| 000058 lfpdx 7C84339C   1     LFPL      fp4,fp36=b(gr4,gr6,0,trap=8)

7| 00005C fpadd 00601018   1     FPADD     fp3,fp35=fp0,fp32,fp2,fp34,fcr

7| 000060 lfpdx 7CA5339C   1     LFPL      fp5,fp37=c(gr5,gr6,0,trap=8)

7| 000064 stfpdx 7C23379C   1     SFPL      a(gr3,gr6,0,trap=8)=fp1,fp33

7| 000068 addi 38630020   1     AI        gr3=gr3,32

7| 00006C lfpdx 7C043B9C   1     LFPL      fp0,fp32=b(gr4,gr7,0,trap=24)

7| 000070 addi 38840020   1     AI        gr4=gr4,32

7| 000074 fpadd 00242818   1     FPADD     fp1,fp33=fp4,fp36,fp5,fp37,fcr

7| 000078 lfpdx 7C453B9C   1     LFPL      fp2,fp34=c(gr5,gr7,0,trap=24)

7| 00007C stfpdx 7C63479C   1     SFPL      a(gr3,gr8,0,trap=-8)=fp3,fp35

7| 000080 addi 38A50020   1     AI        gr5=gr5,32

0| 000084 bc 4320FFD4   0     BCT       ctr=CL.57,taken=100%(100,0)
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Example without ILP (due to recurrence)

void p(double *p, const double *q) {

#pragma disjoint (*p, *q)

__alignx (16, p);  __alignx (16, q); 

for (int i=1; i<N; i++)

p[i] = q[i] + p[i-1];

}
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Code generated at –O3 -qhot
Unrolled by 4x, predictively commoned, not SIMDized, executes in 20 
cycles (5 CPI)
7|                              CL.64:

7| 000040 lfd C8260008   1     LFL       fp1=q[]0.rns4.(gr6,8)

7| 000044 fadd FC41002A   1     AFL       fp2=fp1,fp0,fcr

7| 000048 stfdu DC050020   1     STFDU     gr5,p[]0.rns3.(gr5,32)=fp0

7| 00004C lfd C8860010   1     LFL       fp4=q[]0.rns4.(gr6,16)

7| 000050 stfd D8450008   1     STFL      p[]0.rns3.(gr5,8)=fp2

7| 000054 fadd FC22202A   1     AFL       fp1=fp2,fp4,fcr

7| 000058 lfd C8660018   1     LFL       fp3=q[]0.rns4.(gr6,24)

7| 00005C stfd D8250010   1     STFL      p[]0.rns3.(gr5,16)=fp1

7| 000060 fadd FC43082A   2     AFL       fp2=fp3,fp1,fcr

7| 000064 lfdu CC060020   0     LFDU      fp0,gr6=q[]0.rns4.(gr6,32)

7| 000068 stfd D8450018   1     STFL      p[]0.rns3.(gr5,24)=fp2

7| 00006C fadd FC02002A   3     AFL       fp0=fp2,fp0,fcr

0| 000070 bc 4320FFD0   0     BCT       ctr=CL.64,taken=100%(100,0)
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Alignment Restrictions

Parallel loads/stores important, most common resource 
limitation
16-byte alignment needed for parallel loads/stores
– Loads crossing cache line boundary cause alignment traps: 

cost 1000s of cycles
– 16-byte load from 8-byte boundary: 25% have alignment trap
– Works well with complex?  Sometimes (O4/O5 helps)
– Real*8/double arrays must have:

• 16-byte alignment (use alignx or O4/O5)
• Stride-1 access patterns
• Matching index’s in loops
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Example with Misalignment

void p(double *p, const double *q, const double *r) {

#pragma disjoint (*p, *q, *r)

__alignx (16, p);  __alignx (16, q); __alignx (16, r);

for (int i=1; i<N; i++)

p[i] = q[i] + r[i-1];

}
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Code generated at –O3 -qhot
Unrolled by 16x, partially SIMDized, did not use fpsel (2 CPI)
7|                              CL.74:

7| 0000C4 lfpdx 7CC84B9C   1     LFPL      fp6,fp38=$.V.q[]0.rns5.1(gr8,gr9,0,trap=16)

7| 0000C8 lfpdx 7CE8EB9C   1     LFPL      fp7,fp39=$.V.q[]0.rns5.1(gr8,gr29,0,trap=-64)

7| 0000CC lfsdx 7CA6E99C   1     LFL       fp37=$.V.r[]0.rns4.0(gr6,gr29,0,trap=-64)

7| 0000D0 stfpdx 7C4B579C   1     SFPL      $.V.p[]0.rns3.2(gr11,gr10,0,trap=32)=fp2,fp34

7| 0000D4 fpadd 00844018   1     FPADD     fp4,fp36=fp4,fp36,fp8,fp40,fcr

7| 0000D8 stfpdux 7C2B3FDC   1     SFPLU     gr11,$.V.p[]0.rns3.2(gr11,gr7,0,trap=128)=fp1,fp33

7| 0000DC lfsdx 7C66499C   1     LFL       fp35=$.V.r[]0.rns4.0(gr6,gr9,0,trap=16)

7| 0000E0 lfd C846FFC8   1     LFL       fp2=$.V.r[]0.rns4.0(gr6,-56)

7| 0000E4 stfpdx 7C0BE79C   1     SFPL      $.V.p[]0.rns3.2(gr11,gr28,0,trap=-112)=fp0,fp32

7| 0000E8 stfpdx 7C8BF79C   1     SFPL      $.V.p[]0.rns3.2(gr11,gr30,0,trap=-80)=fp4,fp36

7| 0000EC fpadd 01072818   1     FPADD     fp8,fp40=fp7,fp39,fp5,fp37,fcr

7| 0000F0 lfpdx 7D28DB9C   1     LFPL      fp9,fp41=$.V.q[]0.rns5.1(gr8,gr27,0,trap=-48)

7| 0000F4 lfsdx 7C46D99C   1     LFL       fp34=$.V.r[]0.rns4.0(gr6,gr27,0,trap=-48)

6| 0000F8 lfd C806FFD8   1     LFL       fp0=$.V.r[]0.rns4.0(gr6,-40)

7| 0000FC lfpdx 7C28539C   1     LFPL      fp1,fp33=$.V.q[]0.rns5.1(gr8,gr10,0,trap=32)

7| 000100 stfpdx 7D0BEF9C   1     SFPL      $.V.p[]0.rns3.2(gr11,gr29,0,trap=-64)=fp8,fp40

7| 000104 fpadd 00E91018   1     FPADD     fp7,fp39=fp9,fp41,fp2,fp34,fcr

... (code omitted) ...

0| 000164 bc 4320FF60   0     BCT       ctr=CL.74,taken=100%(100,0)
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Example without Alignx

void p(double *p, const double *q, const double *r) {

#pragma disjoint (*p, *q, *r)

//no alignment information available

for (int i=1; i<N; i++)

p[i] = q[i] + r[i];

}
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Code generated at –O3 -qhot
if (p,q,r aligned) {

Execute SIMDized version (with parallel loads/stores)
} else { // 3 CPI

6|                              CL.218:

6| 0002A0 lfd C8840008   1     LFL       fp4=q[]0.rns2.(gr4,8)

6| 0002A4 lfd C8650008   1     LFL       fp3=r[]0.rns1.(gr5,8)

6| 0002A8 stfd D8430008   1     STFL      p[]0.rns0.(gr3,8)=fp2

6| 0002AC stfsdx 7C433D9C   1     STFL      p[]0.rns0.(gr3,gr7,0,trap=16)=fp34

6| 0002B0 fpadd 00A10018   1     FPADD     fp5,fp37=fp1,fp33,fp0,fp32,fcr

6| 0002B4 lfsdx 7C84399C   1     LFL       fp36=q[]0.rns2.(gr4,gr7,0,trap=16)

6| 0002B8 lfsdx 7C65399C   1     LFL       fp35=r[]0.rns1.(gr5,gr7,0,trap=16)

6| 0002BC lfd C8240018   1     LFL       fp1=q[]0.rns2.(gr4,24)

6| 0002C0 lfd C8050018   1     LFL       fp0=r[]0.rns1.(gr5,24)

6| 0002C4 stfd D8A30018   1     STFL      p[]0.rns0.(gr3,24)=fp5

6| 0002C8 fpadd 00441818   1     FPADD     fp2,fp34=fp4,fp36,fp3,fp35,fcr

6| 0002CC stfsdux 7CA345DC   1     STFDU     gr3,p[]0.rns0.(gr3,gr8,0,trap=32)=fp37

6| 0002D0 lfsdux 7C2441DC   1     LFDU      fp33,gr4=q[]0.rns2.(gr4,gr8,0,trap=32)

6| 0002D4 lfsdux 7C0541DC   1     LFDU      fp32,gr5=r[]0.rns1.(gr5,gr8,0,trap=32)

0| 0002D8 bc 4320FFC8   0     BCT       ctr=CL.218,taken=100%(100,0)

}
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Other restrictions of 440d

Asymmetric instructions
– Good for complex arithmetic, hard to generate automatically

Double precision arithmetic only
IEEE exceptions unavailable
– -qflttrap disables SIMDization

Parallel loads/stores are index-form
– Displacements must be held in index register
– GPR register pressure increases
– May require additional fixed-point arithmetic
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Throughput vs. Latency

Parallel code improves execution throughput
– Can reduce execution unit usage by 1/2

Latency is unaffected
– Effectively overlaps 2 calculations, but no change in 

latency of calculation

SIMDization may show little or no benefit in 
latency-dependent code
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Example of Latency-Dependent Code

void foo(_Complex double* out, _Complex double* in1,

_Complex double* in2) {

#pragma disjoint (*out, *in1, *in2)

__alignx(16, out); __alignx(16, in1); __alignx(16, in2); 

*out = (*in1) * (*in2); 

}
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Code generated at –O3 –qhot –qarch=440d

Fully SIMDized, executes in 17 cycles

| 000000                           PDEF     foo Issue Cycle

2|                                  PROC      out,in1,in2,gr3-gr5                       

5| 000000 lfpdx 7C00239C   1     LFPL      fp0,fp32=20:21:in1[]0.rns5.#re(gr4,0)     0

0| 000004 addis 3C800000   1     LA        gr4=.+CONSTANT_AREA%HI(gr2,0)    0

5| 000008 lfpdx 7C402B9C   1     LFPL      fp2,fp34=22:23:in2[]0.rns4.#re(gr5,0)     1

0| 00000C addi 38840000   1     LA        gr4=+CONSTANT_AREA%LO(gr4,0)    1

5| 000010 lfpsx 7C20231C   1     LFPS      fp1,fp33=+CONSTANT_AREA(gr4,0)   2

5| 000014 fxcxnpma 1022083A   1     FXCXNPMA  fp1,fp33=fp1,fp33,fp32,fp0,fp34,fp34,fcr  6

5| 000018 fxcpmadd 00020824   1     FXPMADD   fp0,fp32=fp1,fp33,fp0,fp32,fp2,fp2,fcr    11

5| 00001C stfpdx 7C001F9C   1     SFPL      24:25:out[]0.rns3.#re(gr3,0)=fp0,fp32     16

6| 000020 bclr 4E800020   0     BA        lr 16
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Code generated at –O3 –qhot –qarch=440

Un-SIMDized, executes in 17 cycles

| 000000                           PDEF     foo Issue Cycle

2|                                  PROC      out,in1,in2,gr3-gr5 

5| 000000 lfd C8040008   1     LFL       fp0=in1[]0.rns5.#im(gr4,8)     0

5| 000004 lfd C8250000   1     LFL       fp1=in2[]0.rns4.#re(gr5,0)     1

5| 000008 lfd C8450008   1     LFL       fp2=in2[]0.rns4.#im(gr5,8)     2

5| 00000C lfd C8640000   1     LFL       fp3=in1[]0.rns5.#re(gr4,0)     3

5| 000010 fmul FC800072   1     MFL       fp4=fp0,fp1,fcr                 5

5| 000014 fmul FC0000B2   1     MFL       fp0=fp0,fp2,fcr                 6

5| 000018 fmadd FC4320BA   3     FMA       fp2=fp4,fp3,fp2,fcr             10

5| 00001C fmsub FC030078   1     FMS       fp0=fp0,fp3,fp1,fcr             11

5| 000020 stfd D8430008   0     STFL      out[]0.rns3.#im(gr3,8)=fp2      15

5| 000024 stfd D8030000   0     STFL      out[]0.rns3.#re(gr3,0)=fp0      16

6| 000028 bclr 4E800020   0     BA        lr 16
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Other Limitations

Benefit function:
– Difficult to estimate benefit of SIMDization in complicated 

code, without having carried out all steps of compilation

– Asymmetrical instructions greatly complicate evaluation, 
may require primary/secondary moves
• Cost of moving between primary and secondary registers is 5 

cycles
– Tuning of cost/benefit heuristics is actively ongoing
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What Benefit Can You Expect From 440d?

Answer: It depends…
– Performance is application-specific

– Should expect between 0% and 100% speedup

– Unfortunately, experience shows some degradations:
• Register spilling
• Primary/secondary moves unexpectedly needed
• Cost/benefit heuristics imperfect – often too much 

SIMDization
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Outline

IBM Blue Gene compilers update

Performance results from V10.1/8.0

Generating SIMD code for Blue Gene

What benefit can you expect from 440d?

Future directions
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Future Directions

– Continuing to tune for performance in upcoming 
compiler fixpacks (PTFs)
• Small, safe items in PTFs
• Larger features in next release

– Tuning to ensure 440d >= 440 
• Cost/benefit heuristics
• Register pressure heuristics

– Long list of opportunities for SIMD improvement 
(good input from IBM Japan)
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Future Directions (continued)

– Improved passing/returning of structures to remove 
redundant stores (from BlueMatter test cases)

– Optimization tuning:
• SIMD generation, folding
• Interprocedural propagation of alignment information
• Misaligned SIMD generation
• Software Prefetching (using dcbt, dcbz)
• Inlining
• Loop distribution
• Loop unrolling
• Register allocation
• Instruction scheduling (global, local, modulo)
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More Information

White Paper by Mark Mendell: “Exploiting the Dual FPU 
in Blue Gene/L” available at:
– http://www-1.ibm.com/support/docview.wss?uid=swg27007511

Mark Mendell’s presentation at 2nd Workshop:
– http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/

22_MarkMendell.pdf

http://www-1.ibm.com/support/docview.wss?uid=swg27007511
http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/22_MarkMendell.pdf
http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/22_MarkMendell.pdf
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Questions?
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<following slides just for reference>
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FORTRAN 2003 Support in XLF V10.1

Data manipulation enhancements
- ALLOCATABLE components (except resizing on assignment)
- INTENT specifications of pointer arguments
- PROTECTED attribute and statement
- VALUE attribute and statement
- procedure declaration statement (PROCEDURE statement)
- relaxed specification expression
Support for IEC 60559 (IEEE 754) exceptions and arithmetic
- IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES intrinsic modules
Input/output enhancements
- stream access (allows access to a file without reference to any record structure)
- the FLUSH statement
- the NEW_LINE intrinsic
- access to input/output error messages (IOMSG= specifier on data-transfer operations, file-positioning, FLUSH and 

file inquiry statements)
- BLANK= and PAD= specifiers on READ statement
- DELIM= specifier on WRITE statement
Enumerations and enumerators
Procedure pointers (except PASS attribute, declaring intrinsic procedure)
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FORTRAN 2003 Support in XLF V10.1 (cont’d)

Derived-type enhancements
mixed component accessibility (allow PRIVATE and PUBLIC attribute on derived 
type components)

Interoperability with C programming language
ISO_C_BINDING intrinsic module (except C_F_PROCPOINTER)
BIND attribute and statement

The ASSOCIATE construct
Scoping enhancement

the ability to control host association into interface bodies (IMPORT statement)
Enhancement integration with the host operating system

access to command line arguments (COMMAND_ARGUMENT_COUNT, 
GET_COMMAND_ARGUMENT, and GET_ENVIRONMENT_VARIABLE intrinsics)
access to the processor's error messages (IOMSG= specifier)
ISO_FORTRAN_ENV intrinsic module



IBM Blue Gene

© 2006 IBM Corporation60 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

GNU C/C++ Compatibility Enhancements
Full list of GNU C/C++ compatibility enhancements in XL C/C++ V8.0 can be found here:
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp?topic=/com.ibm.xlcpp8a.doc/language/ref/gcc_cext.htm

Labels as values / computed 
goto

Nested functions (C only)

Naming types

Conditionals with omitted 
operands

Zero length arrays

Labeled elements (C only)

Case ranges (C only)

Cast to union (C only)

Function Attributes
Support

Noinline, always_inline, 
format, format_arg, section 

Accept and ignore
used



IBM Blue Gene

© 2006 IBM Corporation61 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

lfxd b[0]

for (i=0; i<100; i++) a[i] = b[i+1]
Minimizing Data Reorganization Overhead

+ c[i+1] ;

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

16-byte boundaries

b1 b0

lfxd c[0]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

16-byte boundaries

c1 c0

fpadd

b2+c2

lfxd b[2]

b3 b2

lfxd c[2]

c3 c2

fpadd b3+c3

b0+c0b1+c1 b2+c2b1+c1fpsel

On average: 1 aligned store, 
2 aligned cross-loads, 1 
add,  1 select
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Issues with Runtime Alignment
Depending on the alignment, different code 
sequences may be generated

– When alignment is runtime, the compiler does not 
know which code sequence to generate

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

2. when b[1] is misaligned

lfpd b[1]

b0 b1 b2 b3

b1 b2

16-byte boundaries

1. when b[1] is aligned
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