
IBM Blue Gene

3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006 © 2006 IBM Corporation

Blue Gene Compilers
and Optimization

Allan Martin
IBM Toronto Lab

Mark Mendell
IBM Toronto Lab

IBM Blue Gene

© 2006 IBM Corporation2 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V8.0/10.1

Generating parallel (SIMD) code for Blue Gene

What benefit can you expect from 440d?

Future directions

IBM Blue Gene

© 2006 IBM Corporation3 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Terminology & TLAs/FLAs

SIMD = Single Instruction Multiple Data

SIMDization is the automatic generation of SIMD instructions by the
compiler

440d processor includes “parallel” instructions (aka “double
hummer”, which act on 2 data (M=2 in SIMD)

440d has 32 primary + 32 secondary registers addressed with one
5-bit field

SLP = Superword Level Parallelism (2 to 8-way)

CPI = Cycles Per Iteration

PTF = IBM’s term for a “fixpack”

IBM Blue Gene

© 2006 IBM Corporation4 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

IBM Compilers for Blue Gene/L

First compiler release supporting PPC 440/440d
(General Availability 10/2004):

– XL C/C++ V7.0 Advanced Edition for Linux
– XL Fortran V9.1 Advanced Edition for Linux

Blue Gene support was separated from the Linux
compilers and made available in the next release as a
PRPQ March 17, 2006:

– XL C/C++ V8.0 Advanced Edition for Blue Gene
– XL Fortran V10.1 Advanced Edition for Blue Gene
– PTF1 (coming soon) will support version 3 of toolchain

IBM Blue Gene

© 2006 IBM Corporation5 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

XL C/C++ V8.0 Advanced Edition for Blue Gene

General performance improvements

More GCC compatibility

Perform subset of loop transformations at –O3
optimization level

Improved performance of quad precision floating
point

Improved support for auto-simdization

IBM Blue Gene

© 2006 IBM Corporation6 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

XL Fortran V10.1 Advanced Edition for Blue Gene

General performance improvements

Continued rollout of Fortran 2003

Perform subset of loop transformations at –O3
optimization level

Improved performance of quad precision floating
point

Improved support for auto-simdization

IBM Blue Gene

© 2006 IBM Corporation7 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Blue Gene Specific Work Items in V8.0/10.1

Focus on correctness for SPEC2000 FP

Performance tuning for SPEC2000, SPPM, ddcmd
kernels, NAS 3.2 Serial

Tuning of complex arithmetic for 440d
(without –qhot)

Tuning of high performance math library “MASS”
for 440d

IBM Blue Gene

© 2006 IBM Corporation8 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Blue Gene Specific Work Items in V8.0/10.1

New SIMDization features
Mixedmode SIMDization: SIMDizing part of a loop without
distributing the loop

SIMDization tuning items
Enhanced interprocedural alignment analysis to track 16-
byte compile-time alignment
Better alignment code generation to maximize load reuse
across statements and across iterations
More reuse conscious loop distribution for SIMDization
purposes

IBM Blue Gene

© 2006 IBM Corporation9 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V8.0/10.1

Generating parallel (SIMD) Code For Blue Gene

What benefit can you expect from 440d?

Future directions

IBM Blue Gene

© 2006 IBM Corporation10 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 V8/10.1 vs. V7/9.1

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

NAS 3.2 - serial SPEC 2000 FP ddcmd kernels sppm

-qarch=440 -qarch=440d

IBM Blue Gene

© 2006 IBM Corporation11 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 V8/10.1 vs. V7/9.1
NAS 3.2 Serial Improvement -O5 V8/10.1 vs. V7/9.1

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%
ft

m
g sp lu

lu
-h

p bt is ep cg ua

A
ve

ra
ge

-qarch=440 -qarch=440d

IBM Blue Gene

© 2006 IBM Corporation12 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 V8/10.1 vs. V7/9.1
ddcmd uKernels

Improvement V8/10.1 vs. V7/9.1 (-O5)

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

da
xp

y.
da

xp
y_

ke
rn

el

dd
cm

d.
ke

rn
l

dd
cm

d.
re

si
du

al

dd
cm

d.
TA

B
C

5X
5X

3

dd
cm

d.
ke

rn
l_

s

dd
cm

d.
sp

lit

do
t.d

ot
_k

er
ne

l

m
m

.m
m

_e
ve

n

m
m

.m
m

_o
dd

A
ve

ra
ge

-qarch=440 -qarch=440d

IBM Blue Gene

© 2006 IBM Corporation13 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 V8/10.1 vs. V7/9.1
SPEC 2000 FP Improvement V8/10.1 vs. V7/9.1 (-O5)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

-qarch=440 -qarch=440d

Note fma3d and sixtrack failed with XLF V9.1

IBM Blue Gene

© 2006 IBM Corporation14 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 -qarch=440d vs. -qarch=440

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

NAS 3.2 - serial SPEC 2000 FP ddcmd kernels sppm

V7/V9.1 V8/V10.1

IBM Blue Gene

© 2006 IBM Corporation15 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 -qarch=440d vs. -qarch=440
NAS 3.2 Serial Improvement -qarch=440d vs. -qarch=440

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%
ft

m
g sp lu

lu
-h

p bt is ep cg ua

A
ve

ra
ge

IBM Blue Gene

© 2006 IBM Corporation16 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 -qarch=440d vs. -qarch=440

ddcmd uKernels
Improvement -O5 -qarch=440d vs. -qarch=440

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

da
xp

y.
da

xp
y_

ke
rn

el

dd
cm

d.
ke

rn
l

dd
cm

d.
re

si
du

al

dd
cm

d.
TA

B
C

5X
5X

3

dd
cm

d.
ke

rn
l_

s

dd
cm

d.
sp

lit

do
t.d

ot
_k

er
ne

l

m
m

.m
m

_e
ve

n

m
m

.m
m

_o
dd

A
ve

ra
ge

IBM Blue Gene

© 2006 IBM Corporation17 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement -O5 -qarch=440d vs. -qarch=440
SPEC 2000 FP Improvement -O5 -qarch=440d vs.

-qarch=440

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%
w

up
w

is
e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

IBM Blue Gene

© 2006 IBM Corporation18 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement of MASS: 440d vs. 440

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

ata
n

ata
n2 co

s
co

sh
co

sis
in

dn
int
ex

p
ex

pm
1 log

log
1p
po

w
rsq

rt*
sq

rt* sin
sin

co
s

sin
h tan tan
h

Scalar Routines (* indicates modified 440d source)

% improvement

IBM Blue Gene

© 2006 IBM Corporation19 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement of MASS: 440d vs. 440

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

va
co

s

va
co

sh

va
si

n

va
si

nh

va
ta

n2

va
ta

nh

vc
br

t

vc
os

vc
os

h

vc
os

is
in

vd
iv

*

vd
in

t

vd
ni

nt

ve
xp

ve
xp

m
1

vl
og

vl
og

1p

vl
og

10

vp
ow

vq
dr

t

vr
ec

*

vr
cb

rt

vr
qd

rt

vs
in

vs
in

co
s

vs
in

h

vt
an

vt
an

h

Vector Routines: Double Precision (* indicates modified 440d source)

% improvement

IBM Blue Gene

© 2006 IBM Corporation20 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Improvement of MASS: 440d vs. 440

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

vs
co

s
vs

co
sis

in
vs

co
sh

vs
cb

rt
vs

rcb
rt

vs
div

*
vs

ex
p

vs
ex

pm
1

vs
log

vs
log

1p
vs

log
10

vs
po

w
vs

qd
rt

vs
rqdrt
vs

rec*
vs

sin
vs

sin
co

s
vs

sin
h

vs
tan

vs
tan

h

Vector Routines: Single Precision (* indicates modified 440d source)

Speedup

IBM Blue Gene

© 2006 IBM Corporation21 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V8.0/10.1

Generating parallel (SIMD) Code For Blue Gene

What benefit can you expect from 440d?

Future directions

IBM Blue Gene

© 2006 IBM Corporation22 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Blue Gene/L Dual Floating Point Unit
“Double Hummer”

IBM Blue Gene

© 2006 IBM Corporation23 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

SIMDization Algorithm

S. Larsen and S. Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings
of the SIGPLAN '00 Conference on Programming Language
Design and Implementation, Vancouver, B.C., June 2000
Designed for MMX and AltiVec type instruction sets
(symmetrical)
Basic Algorithm:

– Find aligned loads/stores in a basic block and pair them up
(require 16-byte alignment to be known)

– Follow use/def chains to find pairs of isomorphic instructions
that can be parallelized

– Combine pairs of instructions to form larger groups
– Estimate cost/benefit of SIMD code sequence
– If positive, generate and schedule the instructions

IBM Blue Gene

© 2006 IBM Corporation24 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

IPA IPA
ObjectsObjects

Other Other
ObjectsObjects

System System
LinkerLinker

Optimized Optimized
ObjectsObjects

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

TPOTPO

C FEC FE C++ FEC++ FE FORTRAN FORTRAN
FEFE

Compile Step
Optimization LibrariesLibraries

PDF infoPDF info

Wcode+

Wcode

Wcode+

Wcode
Wcode

Wcode

Link Step
Optimization

Instrumented
runs

IBM Compiler Architecture

Wcode

IBM Blue Gene

© 2006 IBM Corporation25 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Where does SIMDization Occur?

In TPO (high-level inter-procedural optimizer)
– Active with –qhot, -O4, or –O5

– TPO does most loop level/inlining/cloning optimizations

– TPO will version loops for alignment or trip count

– Some basic block SIMDization

In Tobey (low-level backend optimizer)
– complex arithmetic on double floats is an ideal target

– other non-regular double floats are also packed

– Tobey does most code motion/scheduling/machine specific optimizations

– Tobey will try to generate SIMD code for all basic blocks

IBM Blue Gene

© 2006 IBM Corporation26 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

BG

A Unified Simdization Framework (TPO)
Global information gathering

Pointer Analysis Alignment Analysis

Simdization

Straightline-code Simdization Loop-level Simdization

General Transformation for SIMD

Dependence Elimination Data Layout Optimization

Simdization

SIMD Intrinsic Generator

Constant Propagation

VMX

CELL

architecture independent
architecture specific

Diagnostic
output

…

Idiom Recognition

IBM Blue Gene

© 2006 IBM Corporation27 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

TOBEY (Backend) Blue Gene SIMDization

SIMDization applied to all Basic Blocks
– May generate asymmetrical BG instructions
Structure copies using parallel load/store
Reductions applied to TPO generated intrinsics
– __fpadd, __fpmadd, etc.
Local scheduling
– Primary/Secondary register interlock handling
Register allocation
– Spills using parallel load/stores
Loop unroller tries to be smart about BG load/store, parallelizable
instructions

IBM Blue Gene

© 2006 IBM Corporation28 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Enabling SIMDization

Compile for the right machine
– -qarch=440d –qtune=440

Turn on the right optimizations
– -O/-O2: Basic Tobey (Backend) SIMDization
– -O3: adds some loop optimizations, modulo scheduling
– -O3 –qhot: adds TPO SIMDization, more loop opts, versioning
– -O4,-O5 (compile and link): whole-program analysis & SIMDization

Tune your programs
– help the compiler with extra info (directive/pragmas)
– use TPO compiler feedback (-qreport and -qxflag=diagnostic)
– modify algorithms (stride-one memory accesses)

IBM Blue Gene

© 2006 IBM Corporation29 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Disabling SIMDization

Compile for 440
– to completely disable SIMDization: -qarch=440 –qtune=440

Turn off the right optimizations
– compile for –qarch=440d –qtune=440
– disable TPO simdization (keep Tobey simdization, with at

least –O3)
• for a loop: #pragma nosimd | !IBM* NOSIMD
• completely: -qhot=nosimd

– disable Tobey simdization (keep TPO simdization)
• not supported, may not work, try at your own risk
• completely: -qxflag=nhummer:ncmplx

IBM Blue Gene

© 2006 IBM Corporation30 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

When is Alignment Handling Needed?
All Aligned -> NONE

– for (i=0; i<100; i++) a[i] = b[i] + c[i];
action: none

Misaligned, All Relatively Aligned -> NONE
– for (i=0; i<100; i++) a[i+1] = b[i+1] + c[i+1];

action: peel first iter
Misaligned, Compile Time -> YES

– for (i=0; i<100; i++) a[i+1] = b[i+1] + c[i];
– a[i+1], b[i+1] relatively aligned, c[i] not relatively aligned

action: peel first iter, realign c[i]
Misaligned, Runtime -> NONE

– for (i=0; i<100; i++) a[i+1] = b[i+1] + c[i+k];
action: versioning, peel first iter,

realign c[i+k] depending on versioning

IBM Blue Gene

© 2006 IBM Corporation31 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Dealing with Misaligned Data on Blue Gene

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

1 misaligned-quad load costs 2 aligned-quad cross-loads + 1 select

Load one misaligned quad:

IBM Blue Gene

© 2006 IBM Corporation32 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Dealing with Misaligned Data on Blue Gene
(continued)

Load multiple consecutive misaligned quad data:
– reuse quad load from previous iteration

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 b4 b5 b6 b7 b8 ...

lfxd b[4]

b4b5 b4b5

fpsel

b3 b4b3 b4

1 misaligned-quad load costs 1 aligned-quad cross-load + 1 select

IBM Blue Gene

© 2006 IBM Corporation33 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V10.1/8.0

Generating SIMD code for Blue Gene

What benefit can you expect from 440d?

Future directions

IBM Blue Gene

© 2006 IBM Corporation34 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

What code benefits from double hummer?

According to John D. McCalpin, most “real” FP applications
and Spec2000 FP have:
– Only 20% of instructions are floating point
– 40% of instructions are load/store
– Having 2 independent load/store and FP units allows

42% more instructions to issue per cycle
• No data restrictions, but roughly represents upper bound

Code must have significant Instruction Level Parallelism
(ILP)
Code must comply with other restrictions of 440d
Benefits are in terms of throughput, not latency

IBM Blue Gene

© 2006 IBM Corporation35 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Instruction Level Parallelism

Codes with significant ILP:
– Complex arithmetic

– Vector operations

– Matrix multiply

– memcpy

Codes without significant ILP:
– Recurrence-relations (loop carried dependence)

– Dependent calculations (non-loop or non-pipelinable)

– Aliased loads & stores (pointers can be bad – use disjoint)

IBM Blue Gene

© 2006 IBM Corporation36 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Example with ILP

subroutine addme (a,b,c,n)
real*8 a(n),b(n),c(n)
call alignx(16,a)
call alignx(16,b)
call alignx(16,c)
do 10 i = 1,n
a(i) = b(i) + c(i)

10 continue
end

IBM Blue Gene

© 2006 IBM Corporation37 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3

Unrolled by 4x, fully SIMDized, executes in 6 cycles (1.5 CPI)
7| CL.57:

7| 000058 lfpdx 7C84339C 1 LFPL fp4,fp36=b(gr4,gr6,0,trap=8)

7| 00005C fpadd 00601018 1 FPADD fp3,fp35=fp0,fp32,fp2,fp34,fcr

7| 000060 lfpdx 7CA5339C 1 LFPL fp5,fp37=c(gr5,gr6,0,trap=8)

7| 000064 stfpdx 7C23379C 1 SFPL a(gr3,gr6,0,trap=8)=fp1,fp33

7| 000068 addi 38630020 1 AI gr3=gr3,32

7| 00006C lfpdx 7C043B9C 1 LFPL fp0,fp32=b(gr4,gr7,0,trap=24)

7| 000070 addi 38840020 1 AI gr4=gr4,32

7| 000074 fpadd 00242818 1 FPADD fp1,fp33=fp4,fp36,fp5,fp37,fcr

7| 000078 lfpdx 7C453B9C 1 LFPL fp2,fp34=c(gr5,gr7,0,trap=24)

7| 00007C stfpdx 7C63479C 1 SFPL a(gr3,gr8,0,trap=-8)=fp3,fp35

7| 000080 addi 38A50020 1 AI gr5=gr5,32

0| 000084 bc 4320FFD4 0 BCT ctr=CL.57,taken=100%(100,0)

IBM Blue Gene

© 2006 IBM Corporation38 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Example without ILP (due to recurrence)

void p(double *p, const double *q) {

#pragma disjoint (*p, *q)

__alignx (16, p); __alignx (16, q);

for (int i=1; i<N; i++)

p[i] = q[i] + p[i-1];

}

IBM Blue Gene

© 2006 IBM Corporation39 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3 -qhot
Unrolled by 4x, predictively commoned, not SIMDized, executes in 20
cycles (5 CPI)
7| CL.64:

7| 000040 lfd C8260008 1 LFL fp1=q[]0.rns4.(gr6,8)

7| 000044 fadd FC41002A 1 AFL fp2=fp1,fp0,fcr

7| 000048 stfdu DC050020 1 STFDU gr5,p[]0.rns3.(gr5,32)=fp0

7| 00004C lfd C8860010 1 LFL fp4=q[]0.rns4.(gr6,16)

7| 000050 stfd D8450008 1 STFL p[]0.rns3.(gr5,8)=fp2

7| 000054 fadd FC22202A 1 AFL fp1=fp2,fp4,fcr

7| 000058 lfd C8660018 1 LFL fp3=q[]0.rns4.(gr6,24)

7| 00005C stfd D8250010 1 STFL p[]0.rns3.(gr5,16)=fp1

7| 000060 fadd FC43082A 2 AFL fp2=fp3,fp1,fcr

7| 000064 lfdu CC060020 0 LFDU fp0,gr6=q[]0.rns4.(gr6,32)

7| 000068 stfd D8450018 1 STFL p[]0.rns3.(gr5,24)=fp2

7| 00006C fadd FC02002A 3 AFL fp0=fp2,fp0,fcr

0| 000070 bc 4320FFD0 0 BCT ctr=CL.64,taken=100%(100,0)

IBM Blue Gene

© 2006 IBM Corporation40 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Alignment Restrictions

Parallel loads/stores important, most common resource
limitation
16-byte alignment needed for parallel loads/stores
– Loads crossing cache line boundary cause alignment traps:

cost 1000s of cycles
– 16-byte load from 8-byte boundary: 25% have alignment trap
– Works well with complex? Sometimes (O4/O5 helps)
– Real*8/double arrays must have:

• 16-byte alignment (use alignx or O4/O5)
• Stride-1 access patterns
• Matching index’s in loops

IBM Blue Gene

© 2006 IBM Corporation41 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Example with Misalignment

void p(double *p, const double *q, const double *r) {

#pragma disjoint (*p, *q, *r)

__alignx (16, p); __alignx (16, q); __alignx (16, r);

for (int i=1; i<N; i++)

p[i] = q[i] + r[i-1];

}

IBM Blue Gene

© 2006 IBM Corporation42 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3 -qhot
Unrolled by 16x, partially SIMDized, did not use fpsel (2 CPI)
7| CL.74:

7| 0000C4 lfpdx 7CC84B9C 1 LFPL fp6,fp38=$.V.q[]0.rns5.1(gr8,gr9,0,trap=16)

7| 0000C8 lfpdx 7CE8EB9C 1 LFPL fp7,fp39=$.V.q[]0.rns5.1(gr8,gr29,0,trap=-64)

7| 0000CC lfsdx 7CA6E99C 1 LFL fp37=$.V.r[]0.rns4.0(gr6,gr29,0,trap=-64)

7| 0000D0 stfpdx 7C4B579C 1 SFPL $.V.p[]0.rns3.2(gr11,gr10,0,trap=32)=fp2,fp34

7| 0000D4 fpadd 00844018 1 FPADD fp4,fp36=fp4,fp36,fp8,fp40,fcr

7| 0000D8 stfpdux 7C2B3FDC 1 SFPLU gr11,$.V.p[]0.rns3.2(gr11,gr7,0,trap=128)=fp1,fp33

7| 0000DC lfsdx 7C66499C 1 LFL fp35=$.V.r[]0.rns4.0(gr6,gr9,0,trap=16)

7| 0000E0 lfd C846FFC8 1 LFL fp2=$.V.r[]0.rns4.0(gr6,-56)

7| 0000E4 stfpdx 7C0BE79C 1 SFPL $.V.p[]0.rns3.2(gr11,gr28,0,trap=-112)=fp0,fp32

7| 0000E8 stfpdx 7C8BF79C 1 SFPL $.V.p[]0.rns3.2(gr11,gr30,0,trap=-80)=fp4,fp36

7| 0000EC fpadd 01072818 1 FPADD fp8,fp40=fp7,fp39,fp5,fp37,fcr

7| 0000F0 lfpdx 7D28DB9C 1 LFPL fp9,fp41=$.V.q[]0.rns5.1(gr8,gr27,0,trap=-48)

7| 0000F4 lfsdx 7C46D99C 1 LFL fp34=$.V.r[]0.rns4.0(gr6,gr27,0,trap=-48)

6| 0000F8 lfd C806FFD8 1 LFL fp0=$.V.r[]0.rns4.0(gr6,-40)

7| 0000FC lfpdx 7C28539C 1 LFPL fp1,fp33=$.V.q[]0.rns5.1(gr8,gr10,0,trap=32)

7| 000100 stfpdx 7D0BEF9C 1 SFPL $.V.p[]0.rns3.2(gr11,gr29,0,trap=-64)=fp8,fp40

7| 000104 fpadd 00E91018 1 FPADD fp7,fp39=fp9,fp41,fp2,fp34,fcr

... (code omitted) ...

0| 000164 bc 4320FF60 0 BCT ctr=CL.74,taken=100%(100,0)

IBM Blue Gene

© 2006 IBM Corporation43 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Example without Alignx

void p(double *p, const double *q, const double *r) {

#pragma disjoint (*p, *q, *r)

//no alignment information available

for (int i=1; i<N; i++)

p[i] = q[i] + r[i];

}

IBM Blue Gene

© 2006 IBM Corporation44 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3 -qhot
if (p,q,r aligned) {

Execute SIMDized version (with parallel loads/stores)
} else { // 3 CPI

6| CL.218:

6| 0002A0 lfd C8840008 1 LFL fp4=q[]0.rns2.(gr4,8)

6| 0002A4 lfd C8650008 1 LFL fp3=r[]0.rns1.(gr5,8)

6| 0002A8 stfd D8430008 1 STFL p[]0.rns0.(gr3,8)=fp2

6| 0002AC stfsdx 7C433D9C 1 STFL p[]0.rns0.(gr3,gr7,0,trap=16)=fp34

6| 0002B0 fpadd 00A10018 1 FPADD fp5,fp37=fp1,fp33,fp0,fp32,fcr

6| 0002B4 lfsdx 7C84399C 1 LFL fp36=q[]0.rns2.(gr4,gr7,0,trap=16)

6| 0002B8 lfsdx 7C65399C 1 LFL fp35=r[]0.rns1.(gr5,gr7,0,trap=16)

6| 0002BC lfd C8240018 1 LFL fp1=q[]0.rns2.(gr4,24)

6| 0002C0 lfd C8050018 1 LFL fp0=r[]0.rns1.(gr5,24)

6| 0002C4 stfd D8A30018 1 STFL p[]0.rns0.(gr3,24)=fp5

6| 0002C8 fpadd 00441818 1 FPADD fp2,fp34=fp4,fp36,fp3,fp35,fcr

6| 0002CC stfsdux 7CA345DC 1 STFDU gr3,p[]0.rns0.(gr3,gr8,0,trap=32)=fp37

6| 0002D0 lfsdux 7C2441DC 1 LFDU fp33,gr4=q[]0.rns2.(gr4,gr8,0,trap=32)

6| 0002D4 lfsdux 7C0541DC 1 LFDU fp32,gr5=r[]0.rns1.(gr5,gr8,0,trap=32)

0| 0002D8 bc 4320FFC8 0 BCT ctr=CL.218,taken=100%(100,0)

}

IBM Blue Gene

© 2006 IBM Corporation45 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Other restrictions of 440d

Asymmetric instructions
– Good for complex arithmetic, hard to generate automatically

Double precision arithmetic only
IEEE exceptions unavailable
– -qflttrap disables SIMDization

Parallel loads/stores are index-form
– Displacements must be held in index register
– GPR register pressure increases
– May require additional fixed-point arithmetic

IBM Blue Gene

© 2006 IBM Corporation46 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Throughput vs. Latency

Parallel code improves execution throughput
– Can reduce execution unit usage by 1/2

Latency is unaffected
– Effectively overlaps 2 calculations, but no change in

latency of calculation

SIMDization may show little or no benefit in
latency-dependent code

IBM Blue Gene

© 2006 IBM Corporation47 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Example of Latency-Dependent Code

void foo(_Complex double* out, _Complex double* in1,

_Complex double* in2) {

#pragma disjoint (*out, *in1, *in2)

__alignx(16, out); __alignx(16, in1); __alignx(16, in2);

*out = (*in1) * (*in2);

}

IBM Blue Gene

© 2006 IBM Corporation48 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3 –qhot –qarch=440d

Fully SIMDized, executes in 17 cycles

| 000000 PDEF foo Issue Cycle

2| PROC out,in1,in2,gr3-gr5

5| 000000 lfpdx 7C00239C 1 LFPL fp0,fp32=20:21:in1[]0.rns5.#re(gr4,0) 0

0| 000004 addis 3C800000 1 LA gr4=.+CONSTANT_AREA%HI(gr2,0) 0

5| 000008 lfpdx 7C402B9C 1 LFPL fp2,fp34=22:23:in2[]0.rns4.#re(gr5,0) 1

0| 00000C addi 38840000 1 LA gr4=+CONSTANT_AREA%LO(gr4,0) 1

5| 000010 lfpsx 7C20231C 1 LFPS fp1,fp33=+CONSTANT_AREA(gr4,0) 2

5| 000014 fxcxnpma 1022083A 1 FXCXNPMA fp1,fp33=fp1,fp33,fp32,fp0,fp34,fp34,fcr 6

5| 000018 fxcpmadd 00020824 1 FXPMADD fp0,fp32=fp1,fp33,fp0,fp32,fp2,fp2,fcr 11

5| 00001C stfpdx 7C001F9C 1 SFPL 24:25:out[]0.rns3.#re(gr3,0)=fp0,fp32 16

6| 000020 bclr 4E800020 0 BA lr 16

IBM Blue Gene

© 2006 IBM Corporation49 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Code generated at –O3 –qhot –qarch=440

Un-SIMDized, executes in 17 cycles

| 000000 PDEF foo Issue Cycle

2| PROC out,in1,in2,gr3-gr5

5| 000000 lfd C8040008 1 LFL fp0=in1[]0.rns5.#im(gr4,8) 0

5| 000004 lfd C8250000 1 LFL fp1=in2[]0.rns4.#re(gr5,0) 1

5| 000008 lfd C8450008 1 LFL fp2=in2[]0.rns4.#im(gr5,8) 2

5| 00000C lfd C8640000 1 LFL fp3=in1[]0.rns5.#re(gr4,0) 3

5| 000010 fmul FC800072 1 MFL fp4=fp0,fp1,fcr 5

5| 000014 fmul FC0000B2 1 MFL fp0=fp0,fp2,fcr 6

5| 000018 fmadd FC4320BA 3 FMA fp2=fp4,fp3,fp2,fcr 10

5| 00001C fmsub FC030078 1 FMS fp0=fp0,fp3,fp1,fcr 11

5| 000020 stfd D8430008 0 STFL out[]0.rns3.#im(gr3,8)=fp2 15

5| 000024 stfd D8030000 0 STFL out[]0.rns3.#re(gr3,0)=fp0 16

6| 000028 bclr 4E800020 0 BA lr 16

IBM Blue Gene

© 2006 IBM Corporation50 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Other Limitations

Benefit function:
– Difficult to estimate benefit of SIMDization in complicated

code, without having carried out all steps of compilation

– Asymmetrical instructions greatly complicate evaluation,
may require primary/secondary moves
• Cost of moving between primary and secondary registers is 5

cycles
– Tuning of cost/benefit heuristics is actively ongoing

IBM Blue Gene

© 2006 IBM Corporation51 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

What Benefit Can You Expect From 440d?

Answer: It depends…
– Performance is application-specific

– Should expect between 0% and 100% speedup

– Unfortunately, experience shows some degradations:
• Register spilling
• Primary/secondary moves unexpectedly needed
• Cost/benefit heuristics imperfect – often too much

SIMDization

IBM Blue Gene

© 2006 IBM Corporation52 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Outline

IBM Blue Gene compilers update

Performance results from V10.1/8.0

Generating SIMD code for Blue Gene

What benefit can you expect from 440d?

Future directions

IBM Blue Gene

© 2006 IBM Corporation53 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Future Directions

– Continuing to tune for performance in upcoming
compiler fixpacks (PTFs)
• Small, safe items in PTFs
• Larger features in next release

– Tuning to ensure 440d >= 440
• Cost/benefit heuristics
• Register pressure heuristics

– Long list of opportunities for SIMD improvement
(good input from IBM Japan)

IBM Blue Gene

© 2006 IBM Corporation54 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Future Directions (continued)

– Improved passing/returning of structures to remove
redundant stores (from BlueMatter test cases)

– Optimization tuning:
• SIMD generation, folding
• Interprocedural propagation of alignment information
• Misaligned SIMD generation
• Software Prefetching (using dcbt, dcbz)
• Inlining
• Loop distribution
• Loop unrolling
• Register allocation
• Instruction scheduling (global, local, modulo)

IBM Blue Gene

© 2006 IBM Corporation55 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

More Information

White Paper by Mark Mendell: “Exploiting the Dual FPU
in Blue Gene/L” available at:
– http://www-1.ibm.com/support/docview.wss?uid=swg27007511

Mark Mendell’s presentation at 2nd Workshop:
– http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/

22_MarkMendell.pdf

http://www-1.ibm.com/support/docview.wss?uid=swg27007511
http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/22_MarkMendell.pdf
http://www.epcc.ed.ac.uk/BGworkshop/PROCEEDINGS/22_MarkMendell.pdf

IBM Blue Gene

© 2006 IBM Corporation56 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Questions?

IBM Blue Gene

© 2006 IBM Corporation57 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

<following slides just for reference>

IBM Blue Gene

© 2006 IBM Corporation58 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

FORTRAN 2003 Support in XLF V10.1

Data manipulation enhancements
- ALLOCATABLE components (except resizing on assignment)
- INTENT specifications of pointer arguments
- PROTECTED attribute and statement
- VALUE attribute and statement
- procedure declaration statement (PROCEDURE statement)
- relaxed specification expression
Support for IEC 60559 (IEEE 754) exceptions and arithmetic
- IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES intrinsic modules
Input/output enhancements
- stream access (allows access to a file without reference to any record structure)
- the FLUSH statement
- the NEW_LINE intrinsic
- access to input/output error messages (IOMSG= specifier on data-transfer operations, file-positioning, FLUSH and

file inquiry statements)
- BLANK= and PAD= specifiers on READ statement
- DELIM= specifier on WRITE statement
Enumerations and enumerators
Procedure pointers (except PASS attribute, declaring intrinsic procedure)

IBM Blue Gene

© 2006 IBM Corporation59 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

FORTRAN 2003 Support in XLF V10.1 (cont’d)

Derived-type enhancements
mixed component accessibility (allow PRIVATE and PUBLIC attribute on derived
type components)

Interoperability with C programming language
ISO_C_BINDING intrinsic module (except C_F_PROCPOINTER)
BIND attribute and statement

The ASSOCIATE construct
Scoping enhancement

the ability to control host association into interface bodies (IMPORT statement)
Enhancement integration with the host operating system

access to command line arguments (COMMAND_ARGUMENT_COUNT,
GET_COMMAND_ARGUMENT, and GET_ENVIRONMENT_VARIABLE intrinsics)
access to the processor's error messages (IOMSG= specifier)
ISO_FORTRAN_ENV intrinsic module

IBM Blue Gene

© 2006 IBM Corporation60 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

GNU C/C++ Compatibility Enhancements
Full list of GNU C/C++ compatibility enhancements in XL C/C++ V8.0 can be found here:
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp?topic=/com.ibm.xlcpp8a.doc/language/ref/gcc_cext.htm

Labels as values / computed
goto

Nested functions (C only)

Naming types

Conditionals with omitted
operands

Zero length arrays

Labeled elements (C only)

Case ranges (C only)

Cast to union (C only)

Function Attributes
Support

Noinline, always_inline,
format, format_arg, section

Accept and ignore
used

IBM Blue Gene

© 2006 IBM Corporation61 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

lfxd b[0]

for (i=0; i<100; i++) a[i] = b[i+1]
Minimizing Data Reorganization Overhead

+ c[i+1] ;

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

16-byte boundaries

b1 b0

lfxd c[0]

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

16-byte boundaries

c1 c0

fpadd

b2+c2

lfxd b[2]

b3 b2

lfxd c[2]

c3 c2

fpadd b3+c3

b0+c0b1+c1 b2+c2b1+c1fpsel

On average: 1 aligned store,
2 aligned cross-loads, 1
add, 1 select

IBM Blue Gene

© 2006 IBM Corporation62 3rd BG/L Systems Software & Applications Workshop, Tokyo April 19-20, 2006

Issues with Runtime Alignment
Depending on the alignment, different code
sequences may be generated

– When alignment is runtime, the compiler does not
know which code sequence to generate

16-byte boundaries

lfxd b[0]

b0b1 b0b1

lfxd b[2]

b2b3 b2b3

fpsel

b1 b2b1 b2

b0 b1 b2 b3 ...

2. when b[1] is misaligned

lfpd b[1]

b0 b1 b2 b3

b1 b2

16-byte boundaries

1. when b[1] is aligned

	Blue Gene Compilers and Optimization
	Outline
	Terminology & TLAs/FLAs
	IBM Compilers for Blue Gene/L
	XL C/C++ V8.0 Advanced Edition for Blue Gene
	XL Fortran V10.1 Advanced Edition for Blue Gene
	Blue Gene Specific Work Items in V8.0/10.1
	Blue Gene Specific Work Items in V8.0/10.1
	Outline
	Improvement -O5 V8/10.1 vs. V7/9.1
	Improvement -O5 V8/10.1 vs. V7/9.1
	Improvement -O5 V8/10.1 vs. V7/9.1
	Improvement -O5 V8/10.1 vs. V7/9.1
	Improvement -O5 -qarch=440d vs. -qarch=440
	Improvement -O5 -qarch=440d vs. -qarch=440
	Improvement -O5 -qarch=440d vs. -qarch=440
	Improvement -O5 -qarch=440d vs. -qarch=440
	Improvement of MASS: 440d vs. 440
	Improvement of MASS: 440d vs. 440
	Improvement of MASS: 440d vs. 440
	Outline
	Blue Gene/L Dual Floating Point Unit�“Double Hummer”
	SIMDization Algorithm
	Where does SIMDization Occur?�
	A Unified Simdization Framework (TPO)
	TOBEY (Backend) Blue Gene SIMDization
	Enabling SIMDization
	Disabling SIMDization
	When is Alignment Handling Needed?
	Dealing with Misaligned Data on Blue Gene
	Dealing with Misaligned Data on Blue Gene (continued)
	Outline
	What code benefits from double hummer?
	Instruction Level Parallelism
	Example with ILP
	Code generated at –O3
	Example without ILP (due to recurrence)
	Code generated at –O3 -qhot
	Alignment Restrictions
	Example with Misalignment
	Code generated at –O3 -qhot
	Example without Alignx
	Code generated at –O3 -qhot
	Other restrictions of 440d
	Throughput vs. Latency
	Example of Latency-Dependent Code
	Code generated at –O3 –qhot –qarch=440d
	Code generated at –O3 –qhot –qarch=440
	Other Limitations
	What Benefit Can You Expect From 440d?
	Outline
	Future Directions
	Future Directions (continued)
	More Information
	Questions?
	<following slides just for reference>
	FORTRAN 2003 Support in XLF V10.1
	FORTRAN 2003 Support in XLF V10.1 (cont’d)
	GNU C/C++ Compatibility Enhancements
	Minimizing Data Reorganization Overhead
	Issues with Runtime Alignment

