
TAU Performance System
Alan Morris, Sameer Shende, Allen D. Malony

University of Oregon
{amorris, sameer, malony}@cs.uoregon.edu

TAU Performance System 2

Acknowledgements

Pete Beckman, ANL
Holger Brunst and Wolfgang Nagel [TU Dresden]
Bernd Mohr [Research Center Juelich, Germany]
Aroon Nataraj, U. Oregon
Suravee Suthikulpanit, U. Oregon

TAU Performance System 3

Outline

Overview of features
Instrumentation
Measurement (Profiling, Tracing)
Analysis tools

New features in TAU
Runtime MPI shared library instrumentation
Workload characterization

New features for BG/L
PAPI now supported
Open Trace Format (OTF), tau2otf
I/O node Linux kernel profiling with TAU (KTAU)

TAU Performance System 4

TAU Performance System

Tuning and Analysis Utilities (13+ year project effort)
Performance system framework for HPC systems

Integrated, scalable, portable, flexible, and parallel
Integrated toolkit for performance problem solving

Automatic instrumentation
Highly configurable measurement system with support
for many flavors of profiling and tracing
Portable analysis and visualization tools
Performance data management and data mining

http://www.cs.uoregon.edu/research/tau

TAU Performance System 5

TAU Instrumentation Approach

Support for standard program events
Routines
Classes and templates
Statement-level blocks

Support for user-defined events
Begin/End events (“user-defined timers”)
Atomic events (e.g., size of memory allocated/freed)

Support definition of “semantic” entities for mapping
Support for event groups
Instrumentation optimization (eliminate instrumentation
in lightweight routines)

TAU Performance System 6

TAU Instrumentation

Flexible instrumentation mechanisms at multiple levels
Source code

manual (TAU API, TAU Component API)
automatic

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP spec)

Object code
pre-instrumented libraries (e.g., MPI using PMPI)
statically-linked and dynamically-linked

Executable code
dynamic instrumentation (pre-execution) (DynInstAPI)
virtual machine instrumentation (e.g., Java using JVMPI)

Runtime Linking (LD_PRELOAD)

TAU Performance System 7

Automatic Instrumentation

We now provide compiler wrapper scripts
Simply replace mpxlf90 with tau_f90.sh
Automatically instruments Fortran source code, links
with TAU MPI Wrapper libraries.

Use tau_cc.sh and tau_cxx.sh for C/C++
Before
CXX = mpCC
F90 = mpxlf90_r
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

After
CXX = tau_cxx.sh
F90 = tau_f90.sh
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

TAU Performance System 8

Profiling Options

Flat profiles
Time (or counts) spent in each routine (nodes in callgraph).
Exclusive/inclusive time, no. of calls, child calls
Support for hardware counters (PAPI, PCL), multiple counters.

Callpath Profiles
Flat profiles, plus
Time spent along a calling path (edges in callgraph)
E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in
MPI_Send when called by f2, when f2 is called by f1, when it is called
by main.
Configurable callpath depth limit (TAU_CALLPATH_DEPTH environment
variable)

Phase based profiles
Flat profiles under a phase (nested phases are allowed)
Default “main” phase has all phases and routines invoked outside phases
Supports static or dynamic (per-iteration) phases
E.g., “IO => MPI_Send” is time spent in MPI_Send during “IO” phase

TAU Performance System 9

ParaProf – Manager Window

performance
database

derived performance metrics

TAU Performance System 10

ParaProf – Full Profile (Miranda)
8K processors!

TAU Performance System 11

ParaProf - Statistics Table (Uintah)

TAU Performance System 12

ParaProf –Callgraph View (MFIX)

TAU Performance System 13

ParaProf – Histogram View (Miranda)

8k processors 16k processors

Scalable 2D displays

TAU Performance System 14

ParaProf – 3D Full Profile (Miranda)

16k processors

TAU Performance System 15

ParaProf – 3D Scatterplot (Miranda)

Each point
is a “thread”
of execution
Relation
between four
routines
shown at
once

TAU Performance System 16

Tracing (Vampir)

Trace analysis provides in-depth understanding of
temporal event and message passing relationships
Traces can even store hardware counters

TAU Performance System 17

Runtime MPI shared library instrumentation

We can now interpose the MPI wrapper library for
applications that have already been compiled (no re-
compilation or re-linking necessary!)
Uses LD_PRELOAD for Linux
Soon on AIX using MPI_EUILIB/MPI_EUILIBPATH
Simply compile TAU with MPI support and prefix your
MPI program with tau_load.sh

Requires shared library MPI

% mpirun –np 4 tau_load.sh a.out

TAU Performance System 18

Workload Characterization

Idea: partition performance data for individual functions
based on runtime parameters
Enable by configuring with –PROFILEPARAM
TAU call: TAU_PROFILE_PARAM1L (value, “name”)
Simple example:

void foo(int input) {
TAU_PROFILE("foo", "", TAU_DEFAULT);
TAU_PROFILE_PARAM1L(input, "input");
...

}

TAU Performance System 19

Workload Characterization

5 seconds spent in function “foo” becomes
2 seconds for “foo [<input> = <25>]”
1 seconds for “foo [<input> = <5>]”
…

Currently used in MPI wrapper library
Allows for partitioning of time spent in MPI routines
based on parameters (message size, message tag,
destination node)
Can be extrapolated to infer specifics about the MPI
subsystem and system as a whole

TAU Performance System 20

Workload Characterization

Simple example, send/receive squared message sizes (0-32MB)
#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv) {
int rank, size, i, j;
int buffer[16*1024*1024];
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
for (i=0;i<1000;i++)

for (j=1;j<16*1024*1024;j*=2) {
if (rank == 0) {
MPI_Send(buffer,j,MPI_INT,1,42,MPI_COMM_WORLD);

} else {
MPI_Status status;
MPI_Recv(buffer,j,MPI_INT,0,42,MPI_COMM_WORLD,&status);

}
}

MPI_Finalize();
}

TAU Performance System 21

Workload Characterization

Use tau_load.sh to instrument MPI routines (SGI Altix)
% icc mpi.c –lmpi

% mpirun –np 2 tau_load.sh a.out

SGI MPI (SGI Altix) Intel MPI (SGI Altix)

TAU Performance System 22

Workload Characterization

MPI Results (NAS Parallel Benchmark 3.1, LU class D
on 16 processors of SGI Altix)

TAU Performance System 23

Workload Characterization

Two different message sizes (~3.3MB and ~4K)

TAU Performance System 24

Vampir, VNG, and OTF
Commercial trace based tools developed at ZiH, T.U. Dresden

Wolfgang Nagel, Holger Brunst and others…
Vampir Trace Visualizer (aka Intel ® Trace Analyzer v4.0)

Sequential program
Vampir Next Generation (VNG)

Client (vng) runs on a desktop, server (vngd) on a cluster
Parallel trace analysis
Orders of magnitude bigger traces (more memory)

Open Trace Format (OTF)
Hierarchical trace format, efficient streams based parallel access with VNGD
Replacement for proprietary formats such as STF
Tracing library available on IBM BG/L platform
Open Source release of OTF by SC06

Development of OTF supported by LLNL contract
http://www.vampir-ng.de

TAU Performance System 25

VNG Timeline Display (Miranda on BGL)

TAU Performance System 26

VNG Timeline Zoomed In

TAU Performance System 27

VNG Process Timeline with PAPI Counters

TAU Performance System 28

KTAU on BG/L

KTAU designed for Linux Kernel profiling
Provides merged application/system profile
Runs on I/O-Node of BG/L

TAU Performance System 29

KTAU on BG/L

Current status
Detailed I/O Node kernel profiling/tracing
KTAU integrated into ZeptoOS build system
KTAU-Daemon (KTAU-D) on I/O Node

Monitors system-wide and/or individual processes
Visualization of trace/profile of ZeptoOS and CIOD

Vampir/JumpShot (trace), and Paraprof (profile)

TAU Performance System 30

KTAU on BG/L

Example of I/O Node profile data
Numbers in microseconds, inclusive left, exclusive right

TAU Performance System 31

KTAU on BG/L, Trace Data

TAU Performance System 32

Support Acknowledgements

Department of Energy (DOE)
Office of Science contracts
University of Utah ASC Level 1
sub-contract
LLNL ASC/NNSA Level 3 contract
LLNL ParaTools/GWT contract

NSF
High-End Computing Grant

T.U. Dresden, GWT
Dr. Wolfgang Nagel and Holger Brunst

Research Centre Juelich
Dr. Bernd Mohr

Los Alamos National Laboratory contracts

	TAU Performance System�Alan Morris, Sameer Shende, Allen D. Malony�University of Oregon�{amorris, sameer, malony}@cs.uoregon.e
	Acknowledgements
	Outline
	TAU Performance System
	TAU Instrumentation Approach
	TAU Instrumentation
	Automatic Instrumentation
	Profiling Options
	ParaProf – Manager Window
	ParaProf – Full Profile (Miranda)
	ParaProf - Statistics Table (Uintah)
	ParaProf –Callgraph View (MFIX)
	ParaProf – Histogram View (Miranda)
	ParaProf – 3D Full Profile (Miranda)
	ParaProf – 3D Scatterplot (Miranda)
	Tracing (Vampir)
	Runtime MPI shared library instrumentation
	Workload Characterization
	Workload Characterization
	Workload Characterization
	Workload Characterization
	Workload Characterization
	Workload Characterization
	Vampir, VNG, and OTF
	VNG Timeline Display (Miranda on BGL)
	VNG Timeline Zoomed In
	VNG Process Timeline with PAPI Counters
	KTAU on BG/L
	KTAU on BG/L
	KTAU on BG/L
	KTAU on BG/L, Trace Data
	Support Acknowledgements

