

Scalability of GeoFEM on BG/L prototype

Kengo Nakajima

The 21st Century Earth Science COE Program Department of Earth & Planetary Science The University of Tokyo. and Japan Science & Technology Agency (JST)

The 3rd BG/L Systems Software & Applications Workshop April-19-2006, CBRC/AIST, Tokyo Japan.

This study

 Parallel FEM benchmarks using IBM BG/L prototype (500MHz) up to 512 PE's in March 2004.

Acknowledgements

- IBM/T.J.Watson Research Center.
 - Dr. David Klepacki
 - Dr. Robert Walkup
- IBM, Japan.
 - Mr. Yasuo Kurita
 - Dr. Hiroki Nakano
- NERSC/Lawrence Berkeley National Laboratory.
 - Dr. Esmond G. Ng
- Earth Simulator Center, Japan.
- GeoFEM Project
- CREST/JST
- CBRC/AIST

BGL-APR19-2006

Introduction

- Features of FEM
- Ideal Scalable System

Benchmarks

- Hardware Environment('s)
- Software
- Results

Features of FEM applications

- HUGE "indirect" accesses
 - memory intensive
 - element-by-element
 - vertex-by-vertex (node-by-node)
- Local "element-by-element" operations
 - sparse coefficient matrices
 - suitable for parallel computing

Features of FEM applications in parallel computation

- communications with ONLY neighbors (except "dot products" etc.)
- amount of messages are relatively small because only values on domain-boundary are exchanged.
- communication (MPI) latency is critical

Performance of FEM Applications

- Scalar Processor
 - Big gap between clock rate and memory bandwidth.
 - Very low sustained/peak performance ratio
 - e.g. 5-8 % on IBM Power-3/Power-5
- Vector Processor
 - Very high sustained/peak performance ratio with special tuning
 - e.g. 35-40 % on the Earth Simulator
 - Sufficiently long loops (= large-scale problem size) are required for certain performance

Performance vs. Problem Size

IBM-SP3: Performance is good for small problems due to cache effect.

Earth Simulator: Performance is good for large scale problems due to long vector length.

Performance vs. Problem Size

IBM-SP3:

Performance is good for small problems due to cache effect.

Earth Simulator: Performance is good for large scale problems due to long vector length.

GFLOPS

Parallel Computing Strong Scaling (Fixed Prob. Size)

IBM-SP3:

Super-scalar effect for small number of PE's. Performance decreases for many PE's due to comm. overhead.

Earth Simulator:

Performance decreases for many PE's due to comm. overhead and **small vector length**.

Parallel Computing Strong Scaling (Fixed Prob. Size)

IBM-SP3:

Super-scalar effect for small number of PE's. Performance decreases for many PE's due to comm. overhead.

Earth Simulator:

Performance decreases for many PE's due to comm. overhead and **small vector length**.

Parallel Computing Strong Scaling (Fixed Prob. Size)

IBM-SP3:

Super-scalar effect for small number of PE's. Performance decreases for many PE's due to comm. overhead.

Earth Simulator:

Performance decreases for many PE's due to comm. overhead and **small vector length**.

What is the Ideal Scalable System ?

Low communication overhead.

PE#

Ideal

Introduction

- Features of FEM
- Ideal Scalable System

Benchmarks

- Hardware Environment('s)
- Software
- Results

Hardware Environment('s)

- 512-node Prototype@500MHz, 256MB/node
 - IBM Rochester, Minnesota
 - with early version of OS & compiler (March 2004)
- 1 PE/node (HEATER mode)
- -qarch=440 (single FPU/PE)
 - 1 GFLOPS for peak performance/PE

Processor Configurations on Each Node.

Heater mode:

one processor run, the other is idle.

Communication coprocessor mode:

one processor is dedicated to communication and the other for general processing.

Virtual node mode:

both CPUs process and communicate.

C1: Computation, C2: Communication

Hardware Environment('s)

- 512-node Prototype@500MHz, 256MB/node
 - IBM Rochester, Minnesota
 - with early version of OS & compiler (March 2004)
- 1 PE/node (HEATER mode)
- -qarch=440 (single FPU/PE)
 - 1 GFLOPS for peak performance/PE
- Comparison with
 - IBM SP-3
 - "Seaborg" at Lawrence Berkeley National Laboratory, USA.
 - 375MHz, peak performance= 1.5 GLOPS/PE
 - 8 of 16 PE's on each SMP node used.
 - Earth Simulator

Comparison with IBM SP3 at NERSC/LBNL, and ES

	BG/L	Seaborg at NERSC/LBNL	Earth Simulator
Architecture	IBM Power PC 440	IBM POWER3 Nighthawk 2	NEC SX-6 based
PE#/node	2	16	8
Clock rate	700 MHz	375 MHz	500 MHz
Peak performance/PE	1.40 GFLOPS (primary FPU only)	1.50 GFLOPS	8.00 GFLOPS
Memory/node	512 MB ~ 2 GB	16GB ~ 64 GB	16 GB
L1 Cache/PE (data/instruct)	32/32 KB	64/32 KB	-
L2 Cache	2 KB/PE	8 MB/PE	_
L3 Cache	4 MB/node	-	-
Memory-PE Bandwidth	5.5 GB/sec/node	16 GB/sec/node	256 GB/sec/node
Bidirectional Communication Bandwidth/node	2.1 GB/sec	2.1 GB/sec	12.3 GB/sec
MPI Latency	5.5-8.5μs	<u>16.3μs</u>	5.0-5.6μs

Software

- Parallel preconditioned iterative solvers for unstructured grids.
 - Elastic-linear problems
 - Block ILU(0)
 - Contact problems

- Codes are originally optimized for the Earth Simulator
- Distributed data structure for parallel FEM procedures developed in *GeoFEM*
 - http://geofem.tokyo.rist.or.jp/
- NO special attention to network topology

Example I: Block ILU(0)

3D Linear Elastic Problems
 Parallel Iterative Linear Solver

 Node-based Local Data Structure
 Localized Block ILU(0) Preconditioning (Block Jacobi)
 Additive Schwartz Domain Decomposition (ASDD)
 Reordering for Vector/Parallel Performance
 http://geofem.tokyo.rist.or.jp/

Simple 3D Cubic Model

Effect of Problem Size Results on 8 nodes (1PE/node) BG/L 512-n prototype@500MHz

Effect of Problem Size Results on 8 nodes (1PE/node)

Effect of Problem Size Results on 8 nodes (1PE/node)

Effect of Problem Size Results on 8 nodes (1PE/node)

Weak Scaling Test Max. 130M DOF for 512 nodes BG/L 512-node prototype@500MHz

Weak Scaling Test IBM-SP3/Seaborg type-2A

as same as that of Type-2A.

Scalability of BG/L prototype is much better

BGL-APR19-2006

▲ 3x16³ DOF/PE

3x24³ DOF/PE

3x44³ DOF/PE

Weak Scaling Test Earth Simulator

Communication Overhead Weak Scaling Test Effect of MPI latency is significant if PE# is large.

Communication Overhead Weak Scaling Test Effect of MPI latency is significant if PE# is large.

Comparison with IBM SP3 at NERSC/LBNL, and ES

	BG/L	Seaborg at NERSC/LBNL	Earth Simulator
Architecture	IBM Power PC 440	IBM POWER3 Nighthawk 2	NEC SX-6 based
PE#/node	2	16	8
Clock rate	700 MHz	375 MHz	500 MHz
Peak performance/PE	1.40 GFLOPS (primary FPU only)	1.50 GFLOPS	8.00 GFLOPS
Memory/node	512 MB ~ 2 GB	16GB ~ 64 GB	16 GB
L1 Cache/PE (data/instruct)	32/32 KB	64/32 KB	-
L2 Cache	2 KB/PE	8 MB/PE	_
L3 Cache	4 MB/node	-	_
Memory-PE Bandwidth	5.5 GB/sec/node	16 GB/sec/node	256 GB/sec/node
Bidirectional Communication Bandwidth/node	2.1 GB/sec	2.1 GB/sec	12.3 GB/sec
MPI Latency	5.5-8.5μs	<u>16.3μs</u>	<u>5.0-5.6μs</u>

Effect of PE# on Each Node

extrapolated from results of 8 PE case

IBM BG/L Prototype

- ▲ 8 nodes x 1PE/node= 8 PE's : Heater △ 8 nodes x 2PE/node= 16 PE's : Virtual Node — Estimated Ideal Performance of 16PE case
- extrapolated from results of 8 PE case

Summary on Elastic Linear Problem

- Constant performance of BG/L for wide range of problem size
 - Single PE/parallel performance
 - O1 or 2 PE's on each node
 - O This point is very peculiar to other H/W, such as IBM-SP3, and the Earth Simulator.
 - Iarge memory bandwidth/FLOPS ratio
 - small memory latency
 - >15% of peak performance (1GFLOPS/PE base)

Performance is better than IBM-SP3.

Preconditioning for Contact Problems

- Contact Problems in Simulations for Earthquake Generation Cycle by GeoFEM.
 - Quasi-Static Stress Accumulation Process at Plate Boundary.
 - Non-linear Contact Problems with Newton-Raphson Iter's
 - Ill-conditioned problem due to penalty constraint by ALM (Augmented Lagrangian).

Problems (cont.)

- Assumptions
 - Infinitesimal deformation, static contact relationship.
 - Location of nodes is in each "contact pair" is identical.
 - No friction : Symmetric coefficient matrix
- Special preconditioning : Selective Blocking.
 - provides robust and smooth convergence in 3D solid mechanics simulations for geophysics with contact.

South-West Japan (SWJ) fixed at z=z_{min} + body force

Strong Scaling Test of SB-BIC-CG <u>λ/E=10⁶</u>, 16-512 PE's of IBM BG/L Prototype Entire Prob. Size Fixed.

Simple Block(2,471,439 DOF)
 SWJ(2,992,266 DOF)

What is the Ideal Scalable System ?

What is the Ideal Scalable System ?

This is that !