

Molecular Dynamics Simulation of Prion Protein

Masakazu SEKIJIMA / 関嶋政和 sekijima@cbrc.jp Computational Biology Research Center (CBRC) National Institute of Advanced Industrial Science and Technology (AIST)

Sory1: Perfomance evaluation and

tuning AMBER9

National Institute of Advanced Industrial Science and Technology

CBRC **Performance Comparison between** National Institute of Advanced Industrial Science Blue Sky and Blue Protein 🙂 and Technology AIST

4

Performance comparison between AMBER8 and 9

BR

National Institute of Advanced Industrial Science

> and Technology AIST

National Institute of Advanced Industrial Science and Technology AIST

Five presentation sheets are eliminated by author.

Story2: Molecular Dynamics Simulation of Wild-Type and Mutant Human Prion Protein: Effect of Pro102Leu

A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular form (PrPC) to its pathogenic isoform, PrPSc.

Molecular Dynamics (MD) Simulation

Molecular Dynamics simulations are widely used for simulating the motion of molecules in order to gain a deeper understanding of

- chemical reactions
- fluid flow
- phase transitions
- and other physical phenomena due to molecular interactions.

Molecular Dynamics (MD) Advanced Industrial Science and Technology AIST

BR

the continuous process is broken down into discrete small timesteps each of which is an iteration and has two parts: force calculation and atom update

Advances de la constant de la consta

purple : Helix Yellow : Strand

Human PrPC 300K 10ns

(a) PrPC structure determined by NMR

(b) Blue colored residues were modeled by this study

Simulation Condition

- Wild Type (102Pro): 20619 atoms
 Mutant (102Leu): 20626 atoms
 difference is only one reside!
- Package: AMBER7
- Potential function: ff96
- TIP3P water
- 20ns at 300K

Simulation Results Wild Type 300K

BRO

Helix was observed at residues which predicted as Helix.

Simulation Results Mutant (P102L) 300K

CBRC

Conformational distribution of Advanced Industrial Science and Technology AIST Wild type in 3D PCA Space

Conformational distribution of Advanced Industrial Science Advanced Industrial Science AIST Mutant in 3D PCA Space

National Institute of Advanced Industrial Science and Technology AIST

Conclusion

- Pro102's dihedral phi value was very stable, remaining within a small range throughout our simulation.
- Leu102's dihedral phi value varied considerably, allowing the possibility of interacting with other residues to form secondary structures, such as a beta sheet.
- This suggests that Pro102 is critical to prevent the transition from random structure to beta sheet structure in the wild type form.