
1 I/O and Filesystems © 2006 IBM Corporation

BG/L System Software Challenges

Automatic SIMDization for double-hummer
Working with the limited per-node memory footprint
Extracting the last 30% of I/O bandwidth



2 I/O and Filesystems © 2006 IBM Corporation

Automatic SIMDization for double-hummer

Compiler improving greatly with each release
Problem is difficult with alignment restrictions, stride=1 restriction, 
and dependence of register pairing
Can quantify with benchmarks comparing –q440 vs. –q440d
Collaborate by publishing guides and best practices

http://www-1.ibm.com/support/docview.wss?uid=swg27007511
Could BG/L consortium collect best practices from members?
Could BG/L consortium share hand-tuned libraries?

http://www-1.ibm.com/support/docview.wss?uid=swg27007511


3 I/O and Filesystems © 2006 IBM Corporation

Working with the limited per-node memory footprint

Release 3 supports racks with 1GB per node
Memory is a substantial cost of a rack
Would a mix of 1GB and 512MB nodes help?
Are there useful coding techniques that can be shared to ease the 
problem?
Can the “pooled node storage” option be useful?

Can it be totally transparent?
If not, how much awareness of paging does an application need?
How general purpose would it need to be?



4 I/O and Filesystems © 2006 IBM Corporation

Extracting the last 30% of I/O bandwidth

Currently we show the Linux can exceed 100MB/sec direct via NFS
Addition of CNK and protocol limits performance to 70MB/sec 
aggregate per ION with NFS
Initial challenge is to tune a file system capable of > 70MB/sec/ION

Network must be tuned to eliminated bottlenecks
Fileservers must be capable of delivering > 70MB/sec
Can we share our techniques for tuning?

With a fast fileserver how do we extract the last 30MB/sec (read)?
Need to analyze more closely where performance is lost
Compare with other similar clients (e.g. ppc32 mac)
Compare with other filesystems (e.g. GPFS can reach 90MB/sec/ION)
Use the 2nd cpu or tree interrupts?


	BG/L System Software Challenges
	Automatic SIMDization for double-hummer
	Working with the limited per-node memory footprint
	Extracting the last 30% of I/O bandwidth

