
April 2006 | Blue Gene/L © 2006 IBM Corporation

BG/L Compute Node Kernel

Pat McCarthy Tom Gooding
IBM Rochester

Compute Node Kernel © 2006 IBM Corporation

BG/L Compute Node Kernel Agenda

CNK quick overview
Additional function in Release 2 and Release 3

Release 3 is not available or announced – items listed are not
guaranteed

Future ideas

Compute Node Kernel © 2006 IBM Corporation

CNK Quick Overview

For more details – Tom Gooding presentation at Edinburgh – 2005
Simple Linux-like kernel

Runs one process at a time
Uses small amount of memory – rest for the application
Supports attaching debuggers

CNK provides a subset of the Linux system calls
File I/O
Directory operations
Signals (ANSI C only)
Process information
Time
Sockets

Goal is to stay out of the way and let the application run

Compute Node Kernel © 2006 IBM Corporation

CNK Function Shipping

All I/O must be processed on the I/O node
CIOD is a user mode application running on the I/O node that:

Manages the compute nodes for the control system
Manages descriptors, working directory, umask for compute nodes
Performs all I/O for all compute nodes
Manages the debugger connections to the compute nodes

Ratio of compute nodes to I/O nodes differs between machines
All communication between CIOD and compute nodes is over virtual
channel 0 of the tree network

Compute Node Kernel © 2006 IBM Corporation

CIOD Overview

CIOD processes requests from:
Control system using a socket to the service node
Debug server using a pipe to a local process
Compute nodes using the tree network

CIOD has one main thread which does all of the work
Only one processor is used on the I/O node
It must never block when processing a request
One secondary thread handles the service connection

Compute Node Kernel © 2006 IBM Corporation

CNK Function Shipping

Control
System

File
Server

CIOD C Node

C Node

C Node

I/O Node

Tree

Functional E
thernet

Compute Node Kernel © 2006 IBM Corporation

CNK Modes

Coprocessor mode
Application runs on processor 0
Very limited environment for running code on processor 1
MPI uses coprocessor for offloading communications

Virtual node mode
Application is loaded and runs on both processors
Memory is divided in half
Application is responsible for sharing resources

Mode is selected at job start time

Compute Node Kernel © 2006 IBM Corporation

Compute Node Memory Map

CNK

256K code,
256K local0,
256K local1,
256K shared

Memory mapped
devices Torus, tree, lockbox, sram

Application memory

Executable, heap,
stack, mapped to
largest TLB

DDR scratchpad

Compute Node Kernel © 2006 IBM Corporation

Release 2 and Release 3 enhancements

BG/L Memory subsystem is very flexible and powerful
Allow adjustments to memory subsystem on an application basis
Job level L1 cache modes for improved performance

Improvements for QCD applications
SRAM allocate
SWOA region

Open source tree device driver
Interrupt driven communication support

One sided ops
File and socket IO performance enhancements
CIOD callouts during job startup
MPMD (Multi-program / Multi-data) support
Continued code improvements

Compute Node Kernel © 2006 IBM Corporation

Memory Subsystem Overview

Compute Node Kernel © 2006 IBM Corporation

L1 Cache Overview

Compute Node Kernel © 2006 IBM Corporation

L1 cache modes for improved performance

The L1 cache characteristics for a job can be specified using environment variables
SWOA – store without allocate mode (BGL_APP_L1_SWOA)

TLB attribute and/or MMUCR flag
Per address range or system wide

Store misses do not allocate a line in the data cache
If line already in the cache – store still occurs to the cache

Performance of certain applications can be affected by the allocation of cache lines on store
misses

If the store accesses for a particular application are distributed sparsely in memory and if
the data is not reused after the store
Avoids the latency and bus bandwidth associated with filling the entire cache line

Many applications have been helped by this option
Avoids loading the line into L1 for a read-modify-write when the line is not already in cache
Evicting cache lines can be more efficient because cache is cleaner
Greatest benefit when in write through mode

Could slow down some applications – try both ways

Compute Node Kernel © 2006 IBM Corporation

Improvements for QCD applications

In order to get improved performance, the QCD community needed
access to low latency memory and L1 cache settings
SRAM allocate

SRAM is low latency 16 KB of memory accessible by both 440 cores
No caching of SRAM – coherent between cores
Allows fast communication between the cores
APIs provided to gain access to SRAM storage

SWOA region
Small amount of storage to have the SWOA attribute, but not all
memory as provided by the SWOA environment variables
Implementation similar to DDR_scratchpad (used for MPI)

Linker script to move application to open up storage for SWOA
region
System call to get the address and size of the SWOA region

Compute Node Kernel © 2006 IBM Corporation

Open source tree device driver

Request from ANL
Enables ZeptoOS research
2.6 linux version

Interfaces provided
Open

/dev/tree – virtual channel 0
/dev/tree0 – virtual channel 0
/dev/tree1 – virtual channel 1

Provides a memory mapping to the tree hardware
Does not provide interface to actually read/write the device

Enables best performance because a system call is not required to
read or write the device - device mapped into user storage

Compute Node Kernel © 2006 IBM Corporation

Interrupt driven communication support
Kernel support for one sided operations
Uses watermark hardware for the torus to interrupt the kernel on the arrival
of a torus packet and invoke a message layer handler
Current enabling ARMCI (Aggregate Remote Memory Copy Interface)
Global Arrays uses both MPI and ARMCI
ARMCI and GA are PNNL (Pacific Northwest National Labs) libraries
Significant applications

NWChem
GAMESS-UK
GPSHMEM

Compute Node Kernel © 2006 IBM Corporation

Message Layer improvements
Better queue management
Early results look promising (charts)

Axis – communicator in one dimension/axis
Theoretical peak .22 bytes/cyle

Plane – communicator in two dimensions/axis
Theoretical peak .44 bytes/cycle

Volume – communicator in three dimensions/axis
Theoretical peak .66 bytes/cycle

These are measurement of one direction data transfer ½ the maximum distance
of the communicator in a non-congested network

Compute Node Kernel © 2006 IBM Corporation

Early results from one way communications

Compute Node Kernel © 2006 IBM Corporation

File and socket IO performance enhancements

In the previous implementation, during a read operation data was
copied from the tree hardware to a kernel buffer and then copied
into the user buffer
Data is now copied directly from the tree hardware to the user buffer
Implemented to solve socket performance issue but also will
increase performance for file reads when small number of nodes in
a pset are reading

Compute Node Kernel © 2006 IBM Corporation

File and Socket IO Environment Variables

These variables allow adjustment which may be used to improve performance in specific
situations

For most applications, the default setting are the best performance
CIOD_RDWR_BUFFER_SIZE

Buffer size for read/write system calls
CIOD allocates one buffer for each compute node
Default - 87600 in V1R1 and V1R2 – TBD in V1R3 (doing performance test)

CIOD_SOCKET_BUFFER_SIZE
Size of send/receive buffers for sockets

CIOD_TREE_MULTIPLIER
Controls how often CIOD checks for traffic form the compute nodes before checking for control
or waiting IO

CIOD_TREE_RECV_RETRY
The number of time CIOD reads the tree device before deciding a packet is not available and
yielding the processor

CIOD_TREE_SEND_RETRY
The number of times CIOD tries to send a packet to the tree device before yielding the
processor
A larger value causes CIOD to pay more attention to the tree

Compute Node Kernel © 2006 IBM Corporation

CIOD callouts during job startup

Request to allow file system code to register a script to be called by
CIOD when

Job startup and termination
Parameter passed to script include

Job mode – virtual node mode vs coprocessor mode
Partition size
Job ID

Compute Node Kernel © 2006 IBM Corporation

MPMD (Multi-program / Multi-data) support

Request to support CCSM application
Based on a design originally prototyped by Watson Research and will now
be integrated into the product

Kernel will provide an rts_exec interface to allow a compute node to switch the
application running on the node
Will only be allowed once per node / per job (no multiple execs allowed)
The database entry for the job will contain the original program started on all the
nodes at job startup (probably a simple launch program which would rts_exec the
program on each node)

Integration of external tools (debuggers) is an issue to be resolved
Can specify executable when starting the debug client (gdb)

Support for checkpoint / restart
Checkpoint restart uses MPI barriers

Environment variables design still evolving
All applications in the partition must be compiled with the same tool chain
and same level of MPI libraries

Compute Node Kernel © 2006 IBM Corporation

Continued code improvements

IBM continues to make enhancements to improve the general
quality of the product

CN -> CIOD message format enhancements
IO kernel upgrade

SLES 9 SP1 -> SLES 9 SP2
RAS improvements

Link chip training failures isolation improvements
Interrupt handling improvements for multiple signals

Compute Node Kernel © 2006 IBM Corporation

Future Ideas

These are items we are considering – but funding is a consideration
Pooled node storage

Adds ability for nodes to share memory between nodes
Memory swapping between the nodes

Improvements for QCD applications
L1 transient storage

IBM Confidential

Overview of Swap Scheme for
Pooled Node Storage

(Swapped-in subset
of pages)

Logical View of full
memory capacity
greater than local

node storage space

Physical Memory
on Local

Computational
Node

(Swapped-out subset
of pages)

Physical Memory
on Remote

Companion Node

Processor

Reads / Writes

Processor

Node 1

Node 2

• Application sees single addressing region;
Local/remote location of data is totally
transparent.

• All regions of storage can be swapped out of
/ into local node (no permanent “local”
storage region)

• Kernel determines which area of storage on
local node to swap out when application
references data currently contained in off-
node storage. Swap required to bring
desired data on-node before it can be
accessed by processor on Node 1

Single

Application-

Visible

Region

Kernel manages
exchanges as

needed

IBM Confidential

Highlights of Pooled Node Storage for Blue Gene/L
Expands physical node memory of both 512MB and 1GB machines; (up to 2X
addressable capacity)
Swapping would be an LRU algorithm
– 1 meg page size
– 44 – 48 tlbs for user address range
Pools memory from node pairs
– Leverages existing connection path between node pairs for new communications facility with

minimal contention
Flexible trade-off of compute cycles/function vs. memory capacity
– One extreme: All app function occurs on “computational node” in pair; Uses all local memory

plus all memory on “companion node”
– Middle ground: App function split across nodes (heterogeneous). E.G. Memory capacity

available to Node ‘A’ = 1.5X; to Node ‘B’ = 0.5X
– Dynamic memory split across node pairs

• E.G. startup scenario: Actual memory/node = 1X; Node ‘A’ starts with 1.5X memory
usage -> Node ‘B’ starts with 1.5X memory -> both run with 1X memory

– Changes CNK tlbs from static to dynamic when running in pooled storage mode
• Could be used to implement MPROTECT system calls

Compute Node Kernel © 2006 IBM Corporation

L1 Cache Regions

Compute Node Kernel © 2006 IBM Corporation

Additional Improvements for QCD applications

L1 cache can be divided into a normal, transient, and locked regions
Cache is divide into sets (rows) and ways (columns) – 32K
Effective addresses are hashed into a set
Can divide the “ways” of each cache set between the regions
Effects cache replacement policy

Round robin within the region
The TLB for an Effective Address will specify the region for the
address (normal vs transient)

LI cache will be round robin within the region
API to allow users to specify the region for a range of EA’s

Allows an application to be tuned such that one time use data does
not pollute the working set of the algorithm
Can really hurt performance if done incorrectly by actually shrinking
the amount of available cache

Compute Node Kernel © 2006 IBM Corporation

Summary

We continue to enhance the CNK based on
Customer needs
New opportunities
Improved availability

The simplicity of the original CNK design has allowed for
incremental enhancements

	BG/L Compute Node Kernel
	BG/L Compute Node Kernel Agenda
	CNK Quick Overview
	CNK Function Shipping
	CIOD Overview
	CNK Function Shipping
	CNK Modes
	Compute Node Memory Map
	Release 2 and Release 3 enhancements
	Memory Subsystem Overview
	L1 Cache Overview
	L1 cache modes for improved performance
	Improvements for QCD applications
	Open source tree device driver
	Interrupt driven communication support
	Message Layer improvements
	Early results from one way communications
	File and socket IO performance enhancements
	File and Socket IO Environment Variables
	CIOD callouts during job startup
	MPMD (Multi-program / Multi-data) support
	Continued code improvements
	 Future Ideas
	Overview of Swap Scheme for Pooled Node Storage
	Highlights of Pooled Node Storage for Blue Gene/L
	L1 Cache Regions
	Additional Improvements for QCD applications
	Summary

